
15-1

15. BREAKING, TRACING, AND ADVISING

Medley provides several different facilities for modifing the behavior of a function without actually
editing its definition. By “breaking” a function, you can cause breaks to occur at various times in the
running of an incomplete program, so that the program state can be inspected. “Tracing” a function
causes information to be printed every time the function is entered or exited.

“Advising” is a facility for specifying longer-term function modifications. Even system functions can
be changed through advising.

Breaking Functions and Debugging

Debugging a collection of Lisp functions involves isolating problems within particular functions
and/or determining when and where incorrect data are being generated and transmitted. In the
Medley, there are three facilities which allow you to (temporarily) modify selected function
definitions so that you can follow the flow of control in your programs, and obtain this debugging
information. All three redefine functions in terms of a system function, BREAK1 (see Chapter 14).

BREAK modifies the definition of a function FN, so that whenever FN is called and a break condition

(user-defined) is satisfied, a function break occurs. You can then interrogate the state of the machine,
perform any computation, and continue or return from the call.

TRACE modifies a definition of a function FN so that whenever FN is called, its arguments (or some

other user-specified values) are printed. When the value of FN is computed it is printed also. TRACE

is a special case of BREAK.

BREAKIN allows you to insert a breakpoint inside an expression defining a function. When the

breakpoint is reached and if a break condition (defined by you) is satisfied, a temporary halt occurs
and you can again investigate the state of the computation.

The following two examples illustrate these facilities. In the first example, the function FACTORIAL is

traced. TRACE redefines FACTORIAL so that it print its arguments and value, and then goes on with

the computation. When an error occurs on the fifth recursion, a full interactive break occurs. The
situation is then the same as though (BREAK FACTORIAL) had been performed instead of (TRACE

FACTORIAL), now you can evaluate various Interlisp forms and direct the course of the computation.

In this case, the variable N is examined, and BREAK1 is instructed to return 1 as the value of this cell to

FACTORIAL. The rest of the tracing proceeds without incident. Presumably, FACTORIAL would be

edited to change L to 1.

←PP FACTORIAL
(FACTORIAL

[LAMBDA (N)
(COND

 ((ZEROP N)
 L)
 (T (ITIMES N (FACTORIAL (SUB1 N])
FACTORIAL

←(TRACE FACTORIAL)
(FACTORIAL)

←(FACTORIAL 4)

15-2

MEDLEY REFERENCE MANUAL

FACTORIAL:
N = 4
 FACTORIAL:
 N = 3
 FACTORIAL:
 N = 2
 FACTORIAL:
 N = 1
 FACTORIAL:
 N = 0
UNBOUND ATOM
L
(FACTORIAL BROKEN)
:N
0
:RETURN 1
 FACTORIAL = 1
 FACTORIAL = 1
 FACTORIAL = 2
 FACTORIAL = 6
FACTORIAL = 24
24

←

In the second example, a non-recursive definition of FACTORIAL has been constructed. BREAKIN is

used to insert a call to BREAK1 just after the PROG label LOOP. This break is to occur only on the last

two iterations, when N is less than 2. When the break occurs, in trying to look at the value of N, NN is

mistakenly typed. The break is maintained, however, and no damage is done. After examining N and

M the computation is allowed to continue by typing OK. A second break occurs after the next

iteration, this time with N = 0. When this break is released, the function FACTORIAL returns its

value of 120.

←PP FACTORIAL
(FACTORIAL
 [LAMBDA (N)
 (PROG ((M 1))
 LOOP (COND
 ((ZEROP N)
 (RETURN M)))
 (SETQ M (ITIMES M N))
 (SETQ N (SUB1 N))
 (GO LOOP])
FACTORIAL

←(BREAKIN FACTORIAL (AFTER LOOP) (ILESSP N 2]
SEARCHING...
FACTORIAL

←((FACTORIAL 5)
((FACTORIAL) BROKEN)
:NN
U.B.A.
NN
(FACTORIAL BROKEN AFTER LOOP)
:N
1
:M
120

15-3

BREAKING, TRACING, AND ADVISING

:OK
(FACTORIAL)

((FACTORIAL) BROKEN)
:N
0
:OK
(FACTORIAL)
120

←

Note: BREAK and TRACE can also be used on CLISP words which appear as CAR of form, e.g. FETCH,

REPLACE, IF, FOR, DO, etc., even though thes are not implemented as functions. For conditional

 breaking, you can refer to the entire expression via the variable EXP, e.g. (BREAK (FOR (MEMB

’UNTIL EXP))).

(BREAK0 FN WHEN COMS — —) [Function]

Sets up a break on the function FN; returns FN. If FN is not defined, returns (FN NOT

DEFINED).

The value of WHEN, if non-NIL, should be an expression that is evaluated whenever FN is

entered. If the value of the expression is non-NIL, a break is entered, otherwise the

function simply called and returns without causing a break. This provides the means of
conditionally breaking a function.

The value of COMS, if non-NIL, should be a list of break commands, that are interpreted

and executed if a break occurs. (See the BRKCOMS argument to BREAK1, Chapter 14.)

BREAK0 sets up a break by doing the following:

Redefines FN as a call to BREAK1 (Chapter 14), passing an equivalent

definition of FN, WHEN, FN, and COMS as the BRKEXP, BRKWHEN, BRKFN, and

BRKCOMS arguments to BREAK1

Defines a GENSYM (Chapter 2) with the original definition of FN, and puts it on

the property list of FN under the property BROKEN

Puts the form (BREAK0 WHEN COMS) on the property list of FN under the

property BRKINFO (for use in conjunction with REBREAK)

Adds FN to the front of the list BROKENFNS.

If FN is non-atomic and of the form (FN
1
 IN FN

2
), BREAK0 breaks every call to FN

1
 from

within FN
2
. This is useful for breaking on a function that is called from many places, but

where one is only interested in the call from a specific function, e.g., (RPLACA IN FOO),

(PRINT IN FIE), etc. It is similar to BREAKIN described below, but can be performed

even when FN
2
 is compiled or blockcompiled, whereas BREAKIN only works on

interpreted functions. If FN
1
 is not found in FN

2
, BREAK0 returns the value (FN

1
 NOT

FOUND IN FN
2
).

BREAK0 breaks one function inside another by first calling a function which changes the

name of FN
1
 wherever it appears inside of FN

2
 to that of a new function, FN1-IN-FN2,

15-4

MEDLEY REFERENCE MANUAL

which is initially given the same function definition as FN
1
. Then BREAK0 proceeds to

break on FN1-IN-FN2 exactly as described above. In addition to breaking FN1-IN-FN2

and adding FN1-IN-FN2 to the list BROKENFNS, BREAK0 adds FN1 to the property value

for the property NAMESCHANGED on the property list of FN
2
 and puts (FN

2 . FN1) on the

property list of FN1-IN-FN2 under the property ALIAS. This will enable UNBREAK to

recognize what changes have been made and restore the function FN
2
 to its original state.

If FN is nonatomic and not of the above form, BREAK0 is called for each member of FN

using the same values for WHEN, COMS, and FILE. This distributivity permits you to

specify complicated break conditions on several functions. For example,

(BREAK0 ’(FOO1 ((PRINT PRIN1) IN (FOO2 FOO3)))
 ’(NEQ X T)
 ’(EVAL ?= (Y Z) OK))

will break on FOO1, PRINT-IN-FOO2, PRINT-IN-FOO3, PRIN1-IN-FOO2 and PRIN1-
IN-FOO3.

If FN is non-atomic, the value of BREAK0 is a list of the functions broken.

(BREAK X) [NLambda NoSpread Function]

For each atomic argument, it performs (BREAK0 ATOM T). For each list, it performs

(APPLY ’BREAK0 LIST). For example, (BREAK FOO1 (FOO2 (GREATERP N 5)

(EVAL))) is equivalent to (BREAK0 ’FOO1 T) and (BREAK0 ’FOO2 ’(GREATERP N

5) ’(EVAL)).

(TRACE X) [NLambda NoSpread Function]

For each atomic argument, it performs (BREAK0 ATOM T ’(TRACE ?= NIL GO)).

The flag TRACE is checked for in BREAK1 and causes the message “FUNCTION :” to be

printed instead of (FUNCTION BROKEN).

For each list argument, CAR is the function to be traced, and CDR the forms to be viewed,

i.e., TRACE performs:

(BREAK0 (CAR LIST) T (LIST ’TRACE ’?= (CDR LIST) ’GO))

For example, (TRACE FOO1 (FOO2 Y)) causes both FOO1 and FOO2 to be traced. All

the arguments of FOO1 are printed; only the value of Y is printed for FOO2. In the special

case when you want to see only the value, you can perform (TRACE (FUNCTION)). This

sets up a break with commands (TRACE ?= (NIL) GO).

Note: You can always call BREAK0 to obtain combination of options of BREAK1 not

directly available with BREAK and TRACE. These two functions merely provide

convenient ways of calling BREAK0, and will serve for most uses.

Note: BREAK0, BREAK, and TRACE print a warning if you try to modify a function on the

list UNSAFE.TO.MODIFY.FNS (Chapter 10).

(BREAKIN FN WHERE WHEN COMS) [NLambda Function]

BREAKIN enables you to insert a break, i.e., a call to BREAK1 (Chapter 14), at a specified

location in the interpreted function FN. BREAKIN can be used to insert breaks before or

15-5

BREAKING, TRACING, AND ADVISING

after PROG labels, particular SETQ expressions, or even the evaluation of a variable. This

is because BREAKIN operates by calling the editor and actually inserting a call to BREAK1

at a specified point inside of the function. If FN is a compiled function, BREAKIN returns

(FN UNBREAKABLE) as its value.

WHEN should be an expression that is evaluated whenever the break is entered. If the

value of the expression is non-NIL, a break is entered, otherwise the function simply

called and returns without causing a break. This provides the means of creating a
conditional break. For BREAKIN, unlike BREAK0, if WHEN is NIL, it defaults to T.

COMS, if non-NIL, should be a list of break commands, that are interpreted and executed if

a break occurs. (See the BRKCONMS argument to BREAK1, Chapter 14.)

WHERE specifies where in the definition of FN the call to BREAK1 is to be inserted. WHERE

should be a list of the form (BEFORE ...), (AFTER ...), or (AROUND ...). You

specify where the break is to be inserted by a sequence of editor commands, preceded by
one of the symbols BEFORE, AFTER, or AROUND, which BREAKIN uses to determine what

to do once the editor has found the specified point, i.e., put the call to BREAK1 BEFORE

that point, AFTER that point, or AROUND that point. For example, (BEFORE COND) will

insert a break before the first occurrence of COND, (AFTER COND 2 1) will insert a break

after the predicate in the first COND clause, (AFTER BF (SETQ X &)) after the last place

X is set. Note that (BEFORE TTY:) or (AFTER TTY:) permit you to type in commands

to the editor, locate the correct point, and verify it, and exit from the editor with OK.

BREAKIN then inserts the break BEFORE, AFTER, or AROUND that point.

Note: A STOP command typed to TTY: produces the same effect as an unsuccessful edit

command in the original specification, e.g., (BEFORE CONDD). In both cases, the editor

aborts, and BREAKIN types (NOT FOUND).

If WHERE is (BEFORE ...) or (AFTER ...), the break expression is NIL, since the

value of the break is irrelevant. For (AROUND ...), the break expression will be the

indicated form. In this case, you can use the EVAL command to evaluate that form, and

examine its value, before allowing the computation to proceed. For example, if you
inserted a break after a COND predicate, e.g., (AFTER (EQUAL X Y)), you would be

powerless to alter the flow of computation if the predicate were not true, since the break
would not be reached. However, by breaking (AROUND (EQUAL X Y)), you can

evaluate the break expression, i.e., (EQUAL X Y), look at its value, and return something

else if desired.

If FN is interpreted, BREAKIN types SEARCHING... while it calls the editor. If the location

specified by WHERE is not found, BREAKIN types (NOT FOUND) and exits. If it is found,

BREAKIN puts T under the property BROKEN-IN and (WHERE WHEN COMS) under the the

property BRKINFO on the property list of FN, and adds FN to the front of the list

BROKENFNS.

Multiple break points, can be inserted with a single call to BREAKIN by using a list of the

form ((BEFORE ...) ... (AROUND ...)) for WHERE. It is also possible to call

BREAK or TRACE on a function which has been modified by BREAKIN, and conversely to

BREAKIN a function which has been redefined by a call to BREAK or TRACE.

15-6

MEDLEY REFERENCE MANUAL

The message typed for a BREAKIN break is ((FN) BROKEN), where FN is the name of the

function inside of which the break was inserted. Any error, or typing control-E, will cause
the full identifying message to be printed, e.g., (FOO BROKEN AFTER COND 2 1).

A special check is made to avoid inserting a break inside of an expression headed by any
member of the list NOBREAKS, initialized to (GO QUOTE *), since this break would never

be activated. For example, if (GO L) appears before the label L, BREAKIN (AFTER L)

will not insert the break inside of the GO expression, but skip this occurrence of L and go

on to the next L, in this case the label L. Similarly, for BEFORE or AFTER breaks, BREAKIN

checks to make sure that the break is being inserted at a “safe” place. For example, if you
request a break (AFTER X) in (PROG ... (SETQ X &) ...), the break will actually

be inserted after (SETQ X &), and a message printed to this effect, e.g., BREAK

INSERTED AFTER (SETQ X &).

(UNBREAK X) [NLambda NoSpread Function]

UNBREAK takes an indefinite number of functions modified by BREAK, TRACE, or

BREAKIN and restores them to their original state by calling UNBREAK0. Returns list of

values of UNBREAK0.

(UNBREAK) will unbreak all functions on BROKENFNS, in reverse order. It first sets

BRKINFOLST to NIL.

(UNBREAK T) unbreaks just the first function on BROKENFNS, i.e., the most recently

broken function.

(UNBREAK0 FN —) [Function]

Restores FN to its original state. If FN was not broken, value is (NOT BROKEN) and no

changes are made. If FN was modified by BREAKIN, UNBREAKIN is called to edit it back to

its original state. If FN was created from (FN
1
 IN FN

2
), (i.e., if it has a property ALIAS),

the function in which FN appears is restored to its original state. All dummy functions that

were created by the break are eliminated. Adds property value of BRKINFO to the front of

BRKINFOLST.

Note: (UNBREAK0 ’(FN
1
 IN FN

2
)) is allowed: UNBREAK0 will operate on (FN

1
-IN-

FN
2
) instead.

(UNBREAKIN FN) [Function]

Performs the appropriate editing operations to eliminate all changes made by BREAKIN.

FN may be either the name or definition of a function. Value is FN.

UNBREAKIN is automatically called by UNBREAK if FN has property BROKEN-IN with

value T on its property list.

(REBREAK X) [NLambda NoSpread Function]

Nlambda nospread function for rebreaking functions that were previously broken
without having to respecify the break information. For each function on X, REBREAK

searches BRKINFOLST for break(s) and performs the corresponding operation. Value is a

15-7

BREAKING, TRACING, AND ADVISING

list of values corresponding to calls to BREAK0 or BREAKIN. If no information is found for

a particular function, returns (FN - NO BREAK INFORMATION SAVED).

(REBREAK) rebreaks everything on BRKINFOLST, so (REBREAK) is the inverse of

(UNBREAK).

(REBREAK T) rebreaks just the first break on BRKINFOLST, i.e., the function most

recently unbroken.

(CHANGENAME FN FROM TO) [Function]

Replaces all occurrences of FROM by TO in the definition of FN. If FN is defined by an expr

definition, CHANGENAME performs (ESUBST TO FROM (GETD FN)) (see Chapter 16). If FN

is compiled, CHANGENAME searches the literals of FN (and all of its compiler generated

subfunctions), replacing each occurrence of FROM with TO.

Note that FROM and TO do not have to be functions, e.g., they can be names of variables, or

any other literals.

CHANGENAME returns FN if at least one instance of FROM was found, otherwise NIL.

(VIRGINFN FN FLG) [Function]

The function that knows how to restore functions to their original state regardless of any
amount of breaks, breakins, advising, compiling and saving exprs, etc. It is used by
PRETTYPRINT, DEFINE, and the compiler.

If FLG = NIL, as for PRETTYPRINT, it does not modify the definition of FN in the process

of producing a “clean” version of the definition; it works on a copy.

If FLG = T, as for the compiler and DEFINE, it physically restores the function to its

original state, and prints the changes it is making, e.g., FOO UNBROKEN, FOO UNADVISED,

FOO NAMES RESTORED, etc.

Returns the virgin function definition.

Advising

The operation of advising gives you a way of modifying a function without necessarily knowing how
the function works or even what it does. Advising consists of modifying the interface between
functions as opposed to modifying the function definition itself, as in editing. BREAK, TRACE, and

BREAKDOWN, are examples of the use of this technique: they each modify user functions by placing

relevant computations between the function and the rest of the programming environment.

The principal advantage of advising, aside from its convenience, is that it allows you to treat anyone’s
functions as “black boxes,” and to modify them without concern for their contents or details of
operations. For example, you could modify SYSOUT to set SYSDATE to the time and date of creation

by (ADVISE ’SYSOUT ’(SETQ SYSDATE (DATE))).

As with BREAK, advising works equally well on compiled and interpreted functions. Similarly, it is

possible to make a change which only operates when a function is called from some other specified
function. For example, you can modify the interface between two particular functions, instead of the

15-8

MEDLEY REFERENCE MANUAL

interface between one function and the rest of the world. This latter feature is especially useful for
changing the internal workings of a system function.

For example, suppose you wanted TIME (Chapter 22) to print the results of your measurements to the

file FOO instead of the terminal. You can accomplish this by (ADVISE ’((PRIN1 PRINT SPACES)
IN TIME) ’BEFORE ’(SETQQ U FOO)).

Advising PRIN1, PRINT, or SPACES directly would have affected all calls to these frequently used

functions, whereas advising ((PRIN1 PRINT SPACES) IN TIME) affects just those calls to PRIN1,

PRINT, and SPACES from TIME.

Advice can also be specified to operate after a function has been evaluated. The value of the body of
the original function can be obtained from the variable !VALUE, as with BREAK1.

Implementation of Advising

After a function has been modified several times by ADVISE, it will look like:

(LAMBDA arguments
 (PROG (!VALUE)
 (SETQ !VALUE
 (PROG NIL
 advice1
 .

 . advice before
 .
 advicen
 (RETURN BODY)))
 advice1
 .

 . advice after
 .
 advicem
 (RETURN !VALUE)))

where BODY is equivalent to the original definition. If FN was originally an expr definition, BODY is

the body of the definition, otherwise a form using a GENSYM which is defined with the original

definition.

The structure of a function modified by ADVISE allows a piece of advice to bypass the original

definition by using the function RETURN. For example, if (COND ((ATOM X) (RETURN Y))) were

one of the pieces of advice before a function, and this function was entered with X atomic, Y would be

returned as the value of the inner PROG, !VALUE would be set to Y, and control passed to the advice, if

any, to be executed AFTER the function. If this same piece of advice appeared after the function, Y

would be returned as the value of the entire advised function.

The advice (COND ((ATOM X) (SETQ !VALUE Y))) after the function would have a similar effect,

but the rest of the advice after the function would still be executed.

Note: Actually, ADVISE uses its own versions of PROG, SETQ, and RETURN, (called ADV-PROG, ADV-

SETQ, and ADV-RETURN) to enable advising these functions.

15-9

BREAKING, TRACING, AND ADVISING

Advise Functions

ADVISE is a function of four arguments: FN, WHEN, WHERE, and WHAT. FN is the function to be

modified by advising, WHAT is the modification, or piece of advice. WHEN is either BEFORE, AFTER, or

AROUND, and indicates whether the advice is to operate BEFORE, AFTER, or AROUND the body of the

function definition. WHERE specifies exactly where in the list of advice the new advice is to be placed,

e.g., FIRST, or (BEFORE PRINT) meaning before the advice containing PRINT, or (AFTER 3)

meaning after the third piece of advice, or even (: TTY:). If WHERE is specified, ADVISE first checks

to see if it is one of LAST, BOTTOM, END, FIRST, or TOP, and operates accordingly. Otherwise, it

constructs an appropriate edit command and calls the editor to insert the advice at the corresponding
location.

Both WHEN and WHERE are optional arguments, in the sense that they can be omitted in the call to

ADVISE. In other words, ADVISE can be thought of as a function of two arguments (ADVISE FN

WHAT), or a function of three arguments: (ADVISE FN WHEN WHAT), or a function of four arguments:

(ADVISE FN WHEN WHERE WHAT). Note that the advice is always the last argument. If WHEN = NIL,

BEFORE is used. If WHERE = NIL, LAST is used.

(ADVISE FN WHEN WHERE WHAT) [Function]

FN is the function to be advised, WHEN = BEFORE, AFTER, or AROUND, WHERE specifies

where in the advice list the advice is to be inserted, and WHAT is the piece of advice.

If FN is of the form (FN
1
 IN FN

2
), FN

1
 is changed to FN1-IN-FN2 throughout FN

2
, as with

break, and then FN1-IN-FN2 is used in place of FN. If FN
1
 and/or FN

2
 are lists, they are

distributed as with BREAK0.

If FN is broken, it is unbroken before advising.

If FN is not defined, an error is generated, NOT A FUNCTION.

If FN is being advised for the first time, i.e., if (GETP FN ’ADVISED) = NIL, a GENSYM

is generated and stored on the property list of FN under the property ADVISED, and the

GENSYM is defined with the original definition of FN. An appropriate expr definition is

then created for FN, using private versions of PROG, SETQ, and RETURN, so that these

functions can also be advised. Finally, FN is added to the (front of) ADVISEDFNS, so that

(UNADVISE T) always unadvises the last function advised.

If FN has been advised before, it is moved to the front of ADVISEDFNS.

If WHEN = BEFORE or AFTER, the advice is inserted in FN’s definition either BEFORE or

AFTER the original body of the function. Within that context, its position is determined by

WHERE. If WHERE = LAST, BOTTOM, END, or NIL, the advice is added following all other

advice, if any. If WHERE = FIRST or TOP, the advice is inserted as the first piece of

advice. Otherwise, WHERE is treated as a command for the editor, similar to BREAKIN,

e.g., (BEFORE 3), (AFTER PRINT).

If WHEN = AROUND, the body is substituted for * in the advice, and the result becomes the

new body, e.g., (ADVISE ’FOO ’AROUND ’(RESETFORM (OUTPUT T) *)). Note that

if several pieces of AROUND advice are specified, earlier ones will be embedded inside later

ones. The value of WHERE is ignored.

15-10

MEDLEY REFERENCE MANUAL

Finally (LIST WHEN WHERE WHAT) is added (by ADDPROP) to the value of property

ADVICE on the property list of FN, so that a record of all the changes is available for

subsequent use in readvising. Note that this property value is a list of the advice in order
of calls to ADVISE, not necessarily in order of appearance of the advice in the definition of

FN.

The value of ADVISE is FN.

If FN is non-atomic, every function in FN is advised with the same values (but copies) for

WHEN, WHERE, and WHAT. In this case, ADVISE returns a list of individual functions.

Note: Advised functions can be broken. However if a function is broken at the time it is
advised, it is first unbroken. Similarly, advised functions can be edited, including their
advice. UNADVISE will still restore the function to its unadvised state, but any changes to

the body of the definition will survive. Since the advice stored on the property list is the
same structure as the advice inserted in the function, editing of advice can be performed
on either the function’s definition or its property list.

(UNADVISE X) [NLambda NoSpread Function]

An nlambda nospread like UNBREAK. It takes an indefinite number of functions and

restores them to their original unadvised state, including removing the properties added
by ADVISE. UNADVISE saves on the list ADVINFOLST enough information to allow

restoring a function to its advised state using READVISE. ADVINFOLST and READVISE

thus correspond to BRKINFOLST and REBREAK. If a function contains the property

READVICE, UNADVISE moves the current value of the property ADVICE to READVICE.

(UNADVISE) unadvises all functions on ADVISEDFNS in reverse order, so that the most

recently advised function is unadvised last. It first sets ADVINFOLST to NIL.

(UNADVISE T) unadvises the first function of ADVISEDFNS, i.e., the most recently

advised function.

(READVISE X) [NLambda NoSpread Function]

An nlambda nospread like REBREAK for restoring a function to its advised state without

having to specify all the advise information. For each function on X, READVISE retrieves

the advise information either from the property READVICE for that function, or from

ADVINFOLST, and performs the corresponding advise operation(s). It also stores this

information on the property READVICE if not already there. If no information is found for

a particular function, value is (FN - NO ADVICE SAVED).

(READVISE) readvises everything on ADVINFOLST.

(READVISE T) readvises the first function on ADVINFOLST, i.e., the function most

recently unadvised.

A difference between ADVISE, UNADVISE, and READVISE versus BREAK, UNBREAK, and

REBREAK, is that if a function is not rebroken between successive (UNBREAK)s, its break

information is forgotten. However, once READVISE is called on a function, that function’s

advice is permanently saved on its property list (under READVICE); subsequent calls to

15-11

BREAKING, TRACING, AND ADVISING

UNADVISE will not remove it. In fact, calls to UNADVISE update the property READVICE

with the current value of the property ADVICE, so that the sequence READVISE, ADVISE,

UNADVISE causes the augmented advice to become permanent. The sequence READVISE,

ADVISE, READVISE removes the “intermediate advice” by restoring the function to its

earlier state.

(ADVISEDUMP X FLG) [Function]

Used by PRETTYDEF when given a command of the form (ADVISE ...) or (ADVICE

...). If FLG = T, ADVISEDUMP writes both a DEFLIST and a READVISE; this

corresponds to (ADVISE ...). If FLG = NIL, only the DEFLIST is written; this

corresponds to (ADVICE ...). In either case, ADVISEDUMP copies the advise

information to the property READVICE, thereby making it “permanent” as described

above.

