
6-1

6. HASHARRAYS

Hash arrays let you associate arbitrary Lisp objects (“hash keys”) with other objects (“hash values”),
so you can get from key to value quickly. There are functions for creating hash arrays, putting a hash
key/value pair in a hash array, and quickly retrieving the hash value associated with a given hash
key.

By default, the hash array functions use EQ for comparing hash keys. This means that if non-symbols

are used as hash keys, the exact same object (not a copy) must be used to retrieve the hash value.
However, you can specify the function used to compare hash keys and to “hash” a hash key to a
number. You can, for example, create hash arrays where EQUAL but non-EQ strings will hash to the

same value. Specifying alternative hashing algorithms is described below.

In the description of the functions below, the argument HARRAY should be a hasharray created by

HASHARRAY. For convenience in interactive program development, it may also be NIL, in which case

a hash array (SYSHASHARRAY) provided by the system is used; you must watch out for confusions if

this form is used to associate more than one kind of value with the same key.

Note: For backwards compatibility, the hash array functions will accept a list whose CAR is a hash

array, and whose CDR is the “overflow method” for the hash array (see below). However, hash array

functions are guaranteed to perform with maximum efficiency only if a direct value of HASHARRAY is

given.

Note: Interlisp hash arrays and Common Lisp hash tables are the same data type, so functions from
both may be intermixed. The only difference between the functions may be argument order, as in
MAPHASH and CL:MAPHASH (see below).

(HASHARRAY MINKEYS OVERFLOW HASHBITSFN EQUIVFN RECLAIMABLE REHASH-
THRESHOLD) [Function]

Creates a hash array with space for at least MINKEYS hash keys, with overflow method

OVERFLOW. See discussion of overflow behavior below.

If HASHBITSFN and EQUIVFN are non-NIL, they specify the hashing function and

comparison function used to interpret hash keys. This is described in the section on user-
specified hashing functions below. If HASHBITSFN and EQUIVFN are NIL, the default is

to hash EQ hash keys to the same value.

If RECLAIMABLE is T the entries in the hash table will be removed if the key has a

reference count of one and the table is about to be rehashed. This allows the system, in
some cases, to reuse keys instead of expanding the table.

Note: CL:MAKE-HASH-TABLE does not allow you to specify your own hashing functions

but does provide three built-in types specified by Common Lisp, the Language.

(HARRAY MINKEYS) [Function]

Provided for backward compatibility, this is equivalent to (HASHARRAY MINKEYS

’ERROR), i.e. if the resulting hasarray gets full, an error occurs.

6-2

INTERLISP-D REFERENCE MANUAL

(HARRAYP X) [Function]

Returns X if it is a hash array; otherwise NIL.

HARRAYP returns NIL if X is a list whose CAR is an HARRAYP, even though this is accepted

by the hash array functions (see below).

(PUTHASH KEY VAL HARRAY) [Function]

Associates the hash value VAL with the hash key KEY in HARRAY. Replaces the previous

hash value, if any. If VAL is NIL, any old association is removed (hence a hash value of

NIL is not allowed). If HARRAY is full when PUTHASH is called with a key not already in

the hash array, the function HASHOVERFLOW is called, and the PUTHASH is applied to the

value returned (see below). Returns VAL.

(GETHASH KEY HARRAY) [Function]

Returns the hash value associated with the hash key KEY in HARRAY. Returns NIL, if KEY

is not found.

(CLRHASH HARRAY) [Function]

Clears all hash keys/values from HARRAY. Returns HARRAY.

(HARRAYPROP HARRAY PROP NEWVALUE) [NoSpread Function]

Returns the property PROP of HARRAY; PROP can have the system-defined values SIZE

(the maximum occupancy of HARRAY), NUMKEYS (number of occupied slots), OVERFLOW

(overflow method), HASHBITSFN (hashing function) and EQUIVFN (comparison function).

Except for SIZE and NUMKEYS, a new value may be specified as NEWVALUE.

By using other values for PROP, the user may also set and get arbitrary property values, to

associate additional information with a hash array.

The HASHBITSFN or EQUIVFN properties can only be changed if the hash array is empty.

(HARRAYSIZE HARRAY) [Function]

Returns the number of slots in HARRAY. It’s equivalent to (HARRAYPROP HARRAY

’SIZE).

(REHASH OLDHARRAY NEWHARRAY) [Function]

Hashes all hash keys and values in OLDHARRAY into NEWHARRAY. The two hash arrays do

not have to be (and usually aren’t) the same size. Returns NEWHARRAY.

(MAPHASH HARRAY MAPHFN) [Function]

MAPHFN is a function of two arguments. For each hash key in HARRAY, MAPHFN will be

applied to the hash value, and the hash key. For example:

[MAPHASH A
 (FUNCTION (LAMBDA (VAL KEY)
 (if (LISTP KEY) then (PRINT VAL)]

will print the hash value for all hash keys that are lists. MAPHASH returns HARRAY.

6-3

HASHARRAYS

Note: the argument order for CL:MAPHASH is MAPHFN HARRAY.

(DMPHASH HARRAY1 HARRAY2 ... HARRAYN) [NLambda NoSpread Function]

Prints on the primary output file LOADable forms which will restore the hash-arrays

contained as the values of the atoms HARRAY1, HARRAY2, ... HARRAYN. Example:

(DMPHASH SYSHASHARRAY) will dump the system hash-array.

All EQ identities except symbols and small integers are lost by dumping and loading

because READ will create new structure for each item. Thus if two lists contain an EQ

substructure, when they are dumped and loaded back in, the corresponding substructures
while EQUAL are no longer EQ. The HORRIBLEVARS file package command (Chapter 17)

provides a way of dumping hash tables such that these identities are preserved.

Hash Overflow

When a hash array becomes full, trying to add another hash key will cause the function
HASHOVERFLOW to be called. This either enlarges the hash array, or causes the error Hash table

full. How hash overflow is handled is determined by the value of the OVERFLOW property of the

hash array (which can be accessed by HARRAYPROP). The possibilities for the overflow method are:

the symbol ERROR The error Hash array full is generated when the hash

array overflows. This is the default overflow behavior for
hash arrays returned by HARRAY.

NIL The array is automatically enlarged by at least a factor 1.5

every time it overflows. This is the default overflow behavior
for hash arrays returned by HASHARRAY.

a positive integer N The array is enlarged to include at least N more slots than it

currently has.

a floating point number F The array is changed to include F times the number of

current slots.

a function or lambda expression FN Upon hash overflow, FN is called with the hash array as its

argument. If FN returns a number, that will become the size

of the array. Otherwise, the new size defaults to 1.5 times its
previous size. FN could be used to print a message, or

perform some monitor function.

Note: For backwards compatibility, the hash array functions accept a list whose CAR is the hash array,

and whose CDR is the overflow method. In this case, the overflow method specified in the list

overrides the overflow method set in the hash array. Hash array functions perform with maximum
efficiency only if a direct value of HASHARRAY is given.

Specifying Your Own Hashing Functions

In general terms, when a key is looked up in a hash array, it is converted to an integer, which is used
to index into a linear array. If the key is not the same as the one found at that index, other indices are

6-4

INTERLISP-D REFERENCE MANUAL

tried until it the desired key is found. The value stored with that key is then returned (from GETHASH)

or replaced (from PUTHASH).

To customize hash arrays, you’ll need to supply the “hashing function” used to convert a key to an
integer and the comparison function used to compare the key found in the array with the key being
looked up. For hash arrays to work correctly, any two objects which are equal according to the
comparison function must “hash” to equal integers.

By default, Medley uses a hashing function that computes an integer from the internal address of a
key, and use EQ for comparing keys. This means that if non-atoms are used as hash keys, the exact

same object (not a copy) must be used to retrieve the hash value.

There are some applications for which the EQ constraint is too restrictive. For example, it may be

useful to use strings as hash keys, without the restriction that EQUAL but not EQ strings are considered

to be different hash keys.

The user can override this default behavior for any hash array by specifying the functions used to
compare keys and to “hash” a key to a number. This can be done by giving the HASHBITSFN and

EQUIVFN arguments to HASHARRAY (see above).

The EQUIVFN argument is a function of two arguments that returns non-NIL when its arguments are

considered equal. The HASHBITSFN argument is a function of one argument that produces a positive

small integer (in the range [0..216 - 1]) with the property that objects that are considered equal by the
EQUIVFN produce the same hash bits.

For an existing hash array, the function HARRAYPROP (see above) can be used to examine the hashing

and equivalence functions as the HASHBITSFN and EQUIVFN hash array properties. These properties

are read-only for non-empty hash arrays, as it makes no sense to change the equivalence relationship
once some keys have been hashed.

The following function is useful for creating hash arrays that take strings as hash keys:

(STRINGHASHBITS STRING) [Function]

Hashes the string STRING into an integer that can be used as a HASHBITSFN for a hash

array. Strings which are STREQUAL hash to the same integer.

Example:

(HASHARRAY MINKEYS OVERFLOW ’STRINGHASHBITS ’STREQUAL)

creates a hash array where you can use strings as hash keys.

6-5

HASHARRAYS

[This page intentionally left blank]

