
Interlisp-D Opcodes

Written by: Masinter, van Melle, Sybalsky
Stored on [Eris]<LispCore>Internal>Doc>Opcodes.TEdit
RamVersion: 26,24 (recently incremented)
LispVersion: 113400

/**/
/*
*/
/* Copyright 1989, 1990 Venue *
/
/*
*/
/* This file was work-product resulting from the Xerox/Venue */
/* Agreement dated 18-August-1989 for support of Medley. */
/*
*/
/**/

UFNs—Handling undefined op-codes
When the microcode (or C emulator) doesn’t handle an opcode, it "punts" to the UFN for that opcode:
a Lisp function that does what the opcode should do.

To find out what function to call, the microcode looks at a 256-cell block of storage called the "UFN
table" (pointed to in Lisp by \UFNTable). The UFN table contains, for each opcode

(FNINDEX WORD) Atom number (really “definition index”) of the function to be called.
(NEXTRA BYTE) # of extra bytes to be pushed as argument to the UFN (either 0, 1, or
2).
(NARGS BYTE) # of arguments to call the UFN function with.

The Op-code descriptions
In multibyte opcodes (len-1>0), alpha is byte 1, beta is byte 2, and gamma is byte 3.

TOS refers to the argument on the top of the stack; TOS-1 is arg one back, etc.

@[x] is the contents of the word pointed to by x.

name len-1 stk level effect UFN table entry
0 -X-

used only to denote end of function, never executed.

name len-1 stk level effect UFN table entry
1 CAR 0 0 \CAR.UFN

If arg not LISTP
If NIL, return NIL
else call UFN

2

If cdr code=0, follow indirect pointer. Take value of car field & return it. (Cons cells are 32 bits: first
8 are cdrcode, rest are "carfield")

[required by diagnostics (except car[NIL]); implemented in all ucodes]

name len-1 stk level effect UFN table entry
2 CDR 0 0 \CDR.UFN

If arg not LISTP
if NIL, return NIL
else call UFN

if cdrcode=0, follow indirect pointer
if cdrcode=200q, return NIL
elseif cdr code gt 200Q, CDR is on same page as cell,

in cell page+2*(cdrcode-200Q)
else CDR is contained in cell at PAGE+2*(cdrcode).
(Cons cells are 32 bits: first 8 are cdrcode, rest are "carfield")

[required by diagnostics (except cdr[NIL]); implemented in all ucodes]

name len-1 stk level effect UFN table entry
3 LISTP 0 0 LISTP

Return arg if LISTP (NTYPX=LISTPType), else NIL

[required by diagnostics; implemented in all ucodes]

name len-1 stk level effect UFN table entry
4 NTYPX 0 0 NTYPX

Return type number of arg (right half of word at MDSTypeTable + [tos rsh 9])

[required by diagnostics; implemented in all ucodes]

name len-1 stk level effect UFN table entry
5 TYPEP 1 0 \TYPEP.UFN

return arg if type=alpha byte, else NIL

[required by diagnostics; implemented in all ucodes; similar to LISTP]

name len-1 stk level effect UFN table entry
6 DTEST 2 0 \DTEST.UFN

return arg if typename=(alpha,beta), else call UFN or atom number 372 (\DTESTFAIL) with tos and
(alpha,beta). (typename is word 0 of type’s DTD; DTD is DTDBase+(type# lsh 4))

[required by diagnostics; implemented in all ucodes]

name len-1 stk level effect UFN table entry
{ 7 CDDR 0 0 CDDR

TAKE CDR Twice [not currently used or implemented or emitted.]}
REPLACED BY :

7 UNWIND ? ? \UNWIND.UFN

(N is the alpha byte, KEEP is the beta byte) Unwinds the dynamic stack of the current frame to
absolute stack depth N, performing any unbinding indicated by bind marks found along the way. If
KEEP is 0, the original top of stack is discarded, otherwise it is pushed after unwinding everything
else. This opcode is essentially the same as UNBIND or DUNBIND, except that you stop when the
stack depth is N, rather than stopping as soon as you have processed the first bind mark.

3

The stack depth N is measured in cells (doublewords) starting at the base of the pvar region. N=0
means the stack is utterly empty (including the pvar region; i.e., the end of stack pointer (pointer to
next stack block) would be the same as PV). Of course, N=0 cannot be used at all in the present
architecture, since there is always at least a quadword pad between the frame header and the start
of the dynamic stack. If we get rid of that quadword, then N=0 could have meaning in a frame that
had an empty pvar region, though that is not true of any closure target, the current sole user of this
opcode.

Note that taking the stack depth as alpha byte means this opcode cannot unwind to any deeper than
depth 255. For sake of reference, the largest pvar region in Full.sysout is for the function \CURVE,
whose pvar region is 92 cells long (59 locals and 32 fvars), which means it could still achieve a
dynamic depth of an additional 173 cells before UNWIND would care (it actually never exceeds a
depth of 30).

{let SP be the stack pointer; i.e., TOS = @SP}
TOP _ loc[pvar0]-2 + 2*N
if KEEP neq 0
 then TEMP _ TOS
until (SP _ SP - 2) = TOP
 do if @SP is bind mark
 then perform its unbinding
if KEEP neq 0
 then push TEMP

name len-1 stk level effect UFN table entry
10 FN0 2 1
11 FN1 2 0
12 FN2 2 -1
13 FN3 2 -2
14 FN4 2 -3

call fn (alpha,beta) with N args [required]

name len-1 stk level effect UFN table entry
15 FNX 3 FNX

call fn (beta,gamma) with alpha args [required]

name len-1 stk level effect UFN table entry
16 APPLYFN 0 -1

call fn (tos) with (tos-1) args after popping tos & tos-1 [required. Right now, it goes to
\INTERPRETER if TOS isn’t a litatom. May add requirement that will work with code blocks.]

name len-1 stk level effect UFN table entry
17 CHECKAPPLY* 0 0 \CHECKAPPLY*

If TOS is a literal atom whose definition cell has CCODEP on and ARGTYPE=0 or 2, return it,
otherwise call UFN. Note that CHECKAPPLY* is always immediately followed by an APPLYFn. If
it would save some time, you might be able to immediately jump to the APPLYFN code. (note:
definition cell: bit 0 is CCODEP, bit 1 is "fast" {this fn has empty nametable}, bits 2-3 are ARGTYPE)

[not required; implemented on Dorado]

name len-1 stk level effect UFN table entry
20 RETURN 0 0 \HARDRETURN

do return except when:
slow bit in returner is on
 and
 returnee usecount not 0
 or

4

 returners BF usecount is not 0
 or
 returnee not immediately followed by

a free block
 or
the basic frame of the returner.

In any of those conditions, call UFN or context switch to hardreturn context (which?). [required]

name len-1 stk level effect UFN table entry
21 BIND 2

push binding mark, bind variables, popping values of stack. [required]

alpha byte is [#NILS <<4 + #BINDS].

beta byte is [FirstPVAR], which is 1-origin (i.e., 0 is PVAR1?? it looks like --JDS)

BIND takes #BINDS values off the top of stack and binds FirstPVAR and successive PVARs to those
values. It then sets the #NILS PVARs beyond that to NIL.

Finally, a “binding mark” is pushed on the top of the stack:

 -+-+-+-+-+-+-+--+-+-+-+-+-+-+-*-+-+-+-+-+-+-+-*-+-+-+-+-+-+-+-*
| ~(#NILS + #BINDS) | FirstPVAR << 1 |
-+-+-+-+-+-+-+--+-+-+-+-+-+-+-*-+-+-+-+-+-+-+-*-+-+-+-+-+-+-+-*

Binding marks are identified on the stack because they’re negative: The high bit is guaranteed to be
1.

name len-1 stk level effect UFN table entry
22 UNBIND 0

remember tos, pop until binding mark, unbind variables, push old tos [required]

name len-1 stk level effect UFN table entry
23 DUNBIND 0 (DUNBIND)

pop until binding mark, unbind variables [required]

name len-1 stk level effect UFN table entry
24 RPLPTR.N 1 -1 \RPLPTR.UFN

deleteref value at @(tos-1)+alpha.
addref (tos)
store (TOS) at @(tos-1)+alpha [leave high byte of destination intact]
pop (return (TOS-1)).
If reference count failure, call GCTABLESCAN (atom ????) on punt [not required; in Dorado, 12K]

name len-1 stk level effect UFN table entry
25 GCREF 1 0 \HTFIND

perform ref count operation on TOS according to alpha byte:
0 - addref (add 1 to reference count)
1 - delref (subtract 1 from reference count)
2 - stkref (turn on "stack reference" bit)

If DELREF causes new refcnt to go to 0 & stk bit off, return arg, else always return NIL. On
reference count failure, call UFN (no GCTABLESCAN). [not required; in D0, Dorado]

name len-1 stk level effect UFN table entry
26 ASSOC 0 -1 ASSOC

5

if TOS=NIL, return NIL.
if TOS not LISTP, call UFN
if (CAR TOS) not LISTP, call UFN
if TOS-1 = (CAAR TOS), return (CAR TOS)
set TOS_(CDR TOS), reiterate, checking for interrupts

[not required, in 12K]

name len-1 stk level effect UFN table entry
27 GVAR_ 2 0 \SETGLOBALVAL.UFN

Do RPLPTR on VALSPACE+2*(alpha,beta) of TOS [not required; in Dorado, D0. May want to
change to UFN if high bit of val cell is on]

name len-1 stk level effect UFN table entry
30 RPLACA 0 -1 RPLACA

if TOS-1 not LISTP, call UFN
Fetch @[TOS-1].
if cdrcode=0, follow indirect
Do RPLPTR with TOS
pop (return (TOS-1)).

[not required; in Dorado, 12K]

name len-1 stk level effect UFN table entry
31 RPLACD 0 -1 RPLACD

if tos-1 not listp, call ufn
fetch @ tos-1
if cdrcode=0, follow indirect
if cdrcode<200Q

rplptr cell+2*cdrcode with tos
elseif TOS is NIL

if CDRCODE#200, deleteref cell+2*(cdrcode-200)
change cdrcode to 200

elseif TOS is on same page as cell
addref TOS
if cdrcode#200, deleteref cell+2*(cdrcode-200)
change cdrcode to 200+(cell# of TOS)

else (can call UFN on this case)

(this punts on cases where RPLACD must allocate space) [not required; in Dorado, 12K]

name len-1 stk level effect UFN table entry
32 CONS 0 -1 CONS

Cons pages start with two word header:
word 0: [cnt, nxtcell] (two 8-bit fields: count of available cells

on this page, and word# of next free cell
on this page)

word 1: nextpage (page# of next cons page)

DTDs (data type descriptors) have (ucode relevant fields in caps)
word 0: NAME
word 1: SIZE
words 2,3: FREE
words 4,5: descrs
words 6,7: tyspecs
words 10,11: POINTERS
words 12,13: oldcnt
word 14: COUNTER

6

word 15: NEXTPAGE
\CDR.NIL= 200q

LISTPDTD is the DTD for type LISTP, i.e., at DTDbase + (LLSH 5 4)

Subroutine MAKECONSCELL[page] (given page, return new cell from it):
new cell is at page + page:nxtcell
new CNT is old CNT - 1; punt if CNT was zero
new NXTCELL is new cell’s cdr code

Subroutine NEXTCONSPAGE:
if LISTPDTD:NEXTPAGE # 0 then return it, else punt
(lisp code scans for page with cnt>1)

CONS(X Y) // note: this may not be right. Check sources for truth
If Y is NIL:

get NEXTCONSPAGE
MAKECONSCELL on it
store new cell with \CDR.NIL in cdrcode (hi byte)
X in rest of cell

Elseif Y is a listp and the CNT in Y’s page > 0, then
MAKECONSCELL[Y’s page]
store X as CAR, CDR code = ([(LOLOC Y) and 377q] rsh 1) + 200q

Else:
get NEXTCONSPAGE
MAKECONSCELL on it
store Y in new cell (hi byte 0)
(remember this as Z)

MAKECONSCELL on same page
store X in new cell, with hi byte= [(LOLOC Z) and 377q] rsh 1

ADDREF X
ADDREF Y
increment LISTPDTD:COUNTER
DELREF result

[not required, in Dorado, 12K]

name len-1 stk level effect UFN table entry
33 CMLASSOC 0 -1 CL::%%SIMPLE-ASSOC

Takes to two arguments off the stack and returns the of the simplest case of cl:assoc. Equivalent to
ASSOC opcode, except punts if the key argument is not an immediate datum. [not required, not
implemented on 4K, Dorado]

name len-1 stk level effect UFN table entry
34 FMEMB 0 -1 FMEMB

if TOS=NIL, return NIL
if TOS is not LISTP, call UFN
if (CAR TOS)=TOS-1, return TOS
else TOS_(CDR TOS), do jump to . [i.e., iterate]
Be sure to allow interrupts.

[not required; in 12K]

name len-1 stk level effect UFN table entry
35 CMLMEMBER 0 -1 CL::%%SIMPLE-MEMBER

Takes to two arguments off the stack and returns the of the simplest case of cl:member. Equivalent
to FMEMB opcode, except punts if the key argument is not an immediate datum. [not required, not
implemented on 4K, Dorado]

7

name len-1 stk level effect UFN table entry
{ 36 PUTHASH 0 -2 PUTHASH

[not required, not implemented]}
REPLACED BY :

36 FINDKEY

 alpha = arg#
tos = key
for z from arg# to numargs - 1 by 2
 if arg(z) = key then return(z + 1)
return(NIL)

name len-1 stk level effect UFN table entry
37 CREATECELL 0 0 CREATECELL

Create a new cell of type TOS (a smallposp):
DTD _ DTDSpace + (type lshift 4)
NewCell _ DTD:FREE (2 words)
DTD:FREE _ @(NewCell) (2 words)
 if DTD:FREE is now NIL, signal a gc punt at end of opcode
increment DTD:COUNTER, signal a gc punt if counter goes negative
Zero out DTD:SIZE words starting at NewCell (always an even number)
Deleteref NewCell
TOS _ NewCell

[not required; in Dorado, D0]

name len-1 stk level effect UFN table entry
40 BIN 0 0 \BIN

If TOS is not of type STREAM (13q) then PUNT

Format of stream is (only some fields are used by microcode):
word 0: COFFSET ; a byte offset from BUFFER
word 1: CBUFSIZE ; size of input buffer in bytes
word 2&3: flags [byte] = READABLE (bit 0), WRITABLE (bit 1),

 EXTENDABLE (bit 2), DIRTY (bit 3),
 PEEKEDCHARP (bit 4), ACCESSBITS (bit 5-7)

BUFFER [24 bits] ; pointer to data
word 4: BYTESIZE

 CHARSET ; 8 bits each
word 5: PEEKEDCHAR ; valid when PEEKEDCHARP true
word 6: CHARPOSITION
word 7: CBUFMAXSIZE ; maximum size of output buffer

If COFFSET >= CBUFSIZE then PUNT [buffer overflow]
If READABLE is off then PUNT
Fetch and remember the byte at BUFFER + COFFSET[byte offset]

Note that this address is guaranteed to be valid at this point,
but it could pagefault.

Update the stream:
store COFFSET _ COFFSET + 1

Return the remembered byte as a small positive number.

[not required; in Dorado, 12K]

name len-1 stk level effect UFN table entry
41 BOUT 0 -1 \BOUT

If TOS-1 is not of type STREAM (13q) then PUNT. (see format under BIN)
If TOS is not a small positive number (< 400Q) then PUNT.
if WRITABLE is off then PUNT

8

if BUFFER is NIL then PUNT
if COFFSET >= CBUFMAXSIZE then PUNT
deposit byte from TOS at BUFFER + CCOFF[byte offset]
Update the stream:

store COFFSET _ COFFSET + 1
set DIRTY flag to 1 [if it isn’t already]

return the smallposp one (1)
[not required; not implemented; not even generated by compilers (3/13/89)]

name len-1 stk level effect UFN table entry
42 PROLOGOPDISP 0 0 none

Implements the Prolog Opcode Dispatch. Uses the Prolog registers PC, N,
USQbase, and uSQtablebase.
It takes one arg (DEST). In pseudo-RTL:

if smallp(DEST) then PC _ PC + DEST
else PC _ DEST

N _ logand(PC↑ 00FF’x)
opcode _ lrsh(PC↑ 8)
if uLMBase(opcode) = 1 then

{ LispPC _ USQbase + uSQtablebase(opcode)
 return to Lisp }
else
{ PC _ PC + 1
 (run microcode version) }

name len-1 stk level effect UFN table entry
{43 LIST1 0 0 CONS

(perform (CONS TOS NIL)] not required, not implemented}
REPLACED BY :

43 RESTLIST

 alpha = skip -- number of args to skip
tos = last -- last arg#
tos-1 = tail
IF tail = NIL THEN

page _ NEXTCONSPAGE
GOTO make

ELSE
AddRef tail
page _ CONSPAGE[tail]
GOTO make

make:
get [cnt,,next] from page

make1:
tail _ CONSCELL (CAR = IVar(last), CDR = tail)
AddRef IVar(last)
IF skip = last THEN GOTO fin
last _ last - 1
GOTO make1

noroomonconspage:
fin:

store updated [cnt,,next]
update ListpDTD:COUNTER
DelRef tail
IF noroomonconspage THEN UFN
ELSEIF ListpDTD:COUNTER overflow then GCPUNT
ELSEIF overflow entries then GCHANDLEOVERFLOW
ELSE NEXTOPCODE

name len-1 stk level effect UFN table entry

9

44 MISCN 2 1 + (-n) \MISCN.UFN

Miscellaneous opcode for opcodes needing n args from the stack. The alpha byte contains the sub-
opcode number and the beta byte contains the number of arguments on the stack. This opcode was
added specifically for bytecode emulated implementations, where the opcodes could be written in C.
This opcode provides the same functionality of the SUBRCALL opcode, except it has the added
flexability of having the opcodes UFN (on both Suns & D-Machines). The UFN vectoring routine is
written to adjust the stack according to the number of arguments stated in the beta byte, and there
is a UFN handler for each sub-opcode. The opcode is generated using the (MISCN NAME &REST
ARGS) macro & optimizer defined in LLSUBRS. The NAME parameter must be registered in
\MISCN-TABLE-LIST list, which is of the form (name index ufn-name). The \INIT-MISCN-TABLE
function initializes the MISCN’s sub-opcode UFN vector.

The predefined MISCN sub-opcodes are as follows:
index name function

0 USER-SUBR This is for the user-supplied subr C coded subrs. It contains its
own sub-opcode division based on the 1st argument on the stack.
Like MISCN, USER-SUBR requires that the user-subrs be
registered with the variable \USER-SUBR-LIST (name index
ufn) by calling the \INIT-USER-SUBR-TABLE function. Thus
user-defined subrs can each have thier own ufn handler which
will be indexed through the MISCN & USER-SUBR UFN
mechanism. This opcode can be generated using the (USER-
SUBR NAME &REST ARGS) macro found in LLSUBRS.

1 CL:VALUES Return multiple values
2 CL:SXHASH Common Lisp hash-bits function for EQUAL hash-tables
3 CL:EQLHASHBITSFN [Not currently implemented]
4 STRINGHASHBITS IL hash-bits function for STREQUAL harrayp’s
5 STRING-EQUAL-HASHBITS IL hash-bits function for String-EQUAL harrayp’s
6 CL:VALUES-LIST Return a list of multiple values.

To reserve new MISCN & USER-SUBR entries, you should set the global values for \MISCN-
TABLE-LIST and \USER-SUBR-LIST in the LLSUBRS file & re-write the file to insure that you
will have unique numbers. The funcion WRITECALLSUBRS whould also be called to generate a
new subrs.h file, which contains the C constant definitions for the proper indexes in the C code.

The args to the MISCN UFN routines consist of (INDEX ARG-COUNT ARG-PTR), where INDEX is
your sub-opcode number, ARG-COUNT is the number of args to be found on the stack, and ARG-
PTR is a pointer to the 1st arg found on the stack. The rest of the args can be found by using
(\ADDBASE ARG-PTR (LLSH n 1)) for the n-1th arg.

USER-SUBR UFNs have similar args of (USER-SUBR-INDEX ARG-COUNT ARG-PTR), where
USER-SUBR-INDEX is the user-subr sub-opcode index, and ARG-COUNT & ARG-PTR are the same
as in MISCN UFNs.

CAUTION: Since the stack affect is variable, thus not known to the compiler, the optimizer may do
something funny to the stack args around your call. You should check the emitted code to be sure
that things compiled correctly. Putting your calls in small functions will help.

name len-1 stk level effect UFN table entry
45 <unused> 0 -1 (was ENDCOLLECT)

[not required; not implemented, will be eliminated]

name len-1 stk level effect UFN table entry
 46 RPLCONS 0 -1 \RPLCONS

takes two args (LST ITEM):
check (LISTP LST)

LST’s pages CNT field # 0 (see CONS above),
LST’s cdrcode = 200q.

call UFN if any of these are not true
MAKECONSCELL on LST’s page

10

store ITEM as in cell, with cdr code = 200q (\CDR.NIL)
store as LST’s new cdrcode (((LOLOC newcell) and 377) rsh 1) + 200q.
ADDREF item
increment LISTPDTD:COUNTER
return new cell
[not required; in 12K]

name len-1 stk level effect UFN table entry
 50 ELT 0 -1 ELT

(ELT array index)

Check if TOS-1 is type ARRAYP, call UFN if not
Check if TOS is smallpos, call UFN if not

Array descriptor:
word 0,1: Flags(8),,base(24)

Flags = Orig(1), unused(1), Readonly(1), unused(1), type(4)
word 2: Length
word 3: Offset

Compute index = (TOS) - Orig
if index < 0 or index >= length, call UFN.
index _ index + Offset
dispatch on type (note that index*2 may overflow):

[0] (byte) return (GETBASEBYTE base index)
[1] (smallpos) return (GETBASE base index)
[2] (fixp) return 32 bits at base+index*2 as a fixp (possibly smallp)
[3] (hash) return (GETBASEPTR base index*2)
[4] (code) same as byte
[5] (bitmap) same as smallpos
[6] (pointer) return (GETBASEPTR base index)
[7] (float) return 32 bits at base+index*2 as a floatp
[11.] (double-pointer) same as hash
[12.] (mixed) same as hash

[not required; not implemented yet]

name len-1 stk level effect UFN table entry
 51 NTHCHC 0 -1 NTHCHARCODE

Same as ELT, except type of TOS-1 is STRINGP, the type of the array is always 0, and (optionally)
return NIL instead of calling UFN when index is out of range. [not required; not implemented]

name len-1 stk level effect UFN table entry
 52 SETA 0 -2 SETA

(SETA array index value)

Check array and compute index as with ELT.
If ReadOnly is true, call UFN.
In all cases, leave value on stack on exit.
Dispatch on type:

[0] (byte) perform (PUTBASEBYTE base index value)
[1] (smallpos) perform (PUTBASE base index value)
[2] (fixp) unbox integer value, deposit 32 bits at base+index*2
[3] (hash) perform (RPLPTR base+index*4 value)
[4] (code) same as byte
[5] (bitmap) same as smallpos
[6] (pointer) perform (RPLPTR base+index*2 value)
[7] (float) unbox float value, deposit 32 bits at base+index*2
[11.] (double-pointer) same as hash
[12.] (mixed) same as hash

[not required; not implemented]

11

name len-1 stk level effect UFN table entry
 53 RPLCHARCODE 0 -2 RPLCHARCODE

[SPECIFICATION INCOMPLETE]

[not required; not implemented]

name len-1 stk level effect UFN table entry
 54 EVAL 0 0 \EVAL
takes single argument ARG
If ARG=NIL, T, or smallp, return ARG
If ARG is an atom, attempt free variable lookup:
If bound, return value

If top value is not NOBIND (atom #1), return top value
else ufn-punt
[optional: if ARG is FIXP, FLOATP, return ARG]
[optional: if ARG is LISTP, punt to \EVALFORM (atom 370q)]
else ufn-punt
[not required; in Dorado, 4K]

name len-1 stk level effect UFN table entry
 55 (was EVALV)

name len-1 stk level effect UFN table entry
 56 TYPECHECK.N 1 0 \TYPECHECK.UFN

identical to DTEST; only UFNs different

name len-1 stk level effect UFN table entry
 57 STKSCAN 0 0 \STKSCAN

TOS is VAR.
If TOS is not litatom, punt.
Returns 24 bit pointer to cell where VAR is bound.

Note: must check VAR=NIL, and return pointer to NIL’s value cell. (Free variable lookup algorithm
fails if given NIL, at least on Dorado.)

If variable was bound on stack, the value returned will be a pointer into stack space. If variable is
not bound, value will be pointer to top level value cell.

[not required; in Dorado (I think), not in DLion? In Maiko emulator]

name len-1 stk level effect UFN table entry
 60 BUSBLT 1 -3 \BUSBLT.UFN

Talks to the BusMaster peripheral adapter.
Alpha bytes:

0 WORDSOUT
1 BYTESOUT
2 BYTESOUTSWAPPED
3 NYBBLESOUT
4 WORDSIN
5 BYTESIN
6 BYTESINSWAPPED
7 NYBBLESINSWAPPED

[not required; in 12K only]

name len-1 stk level effect UFN table entry
 61 MISC8 1 -7 \MISC8.UFN

Miscellaneous opcode for operations needing 8 args.

12

Alpha bytes:
Alpha name function

0 IBLT1 - special-purpose halftone-drawing routine for
 spectrogram creation

1 IBLT2 - ditto
[not required; in 12K only]

name len-1 stk level effect UFN table entry
 62 UBFLOAT3 1 -2 \UNBOXFLOAT3
in 12K only
Alpha bytes:

0 POLY
1 3X3
2 4X4
3 133
4 331
5 144
6 441

for matrix multiply, polynomial evaluation
 alpha byte 7: Unboxed ASET

name len-1 stk level effect UFN table entry
 63 TYPEMASK.N 1 0 \TYPEMASK.UFN

similar to TYPEP, except checks if high byte of type table AND with alpha is non-zero, returns TOS
if so, NIL otherwise.

name len-1 stk level effect UFN table entry
 64 PROLOGREADPTR
 65 PROLOGREADTAG
 66 PROLOGWRITETAGPTR
 67 PROLOGWRITE0PTR
 70 PSEUDOCOLOR
 72 EQL

name len-1 stk level effect UFN table entry
 73 DRAWLINE 0 -8 \DRAWLINE.UFN

takes 8 (!) args from top of stack, does line draw inner loop

name len-1 stk level effect UFN table entry
 74 STORE.N 1 0 \STORE.N.UFN

takes quantity at TOS and stores it at TOS-alpha.

name len-1 stk level effect UFN table entry
 75 COPY.N 1 1 \COPY.N.UFN

pushes quantity at (TOS-alpha/2). COPY.N 0 = COPY

name len-1 stk level effect UFN table entry
 76 RAID 0 0 RAID

[used only for UFN]

name len-1 stk level effect UFN table entry
 77 \RETURN

13

used only for UFN for LLBREAK

name len-1 stk level effect UFN table entry
100-106 IVAR 0 1

push IVAR#(opcode-100) [required]

name len-1 stk level effect UFN table entry
107 IVARX 1 1

push IVAR#alpha

[required]

name len-1 stk level effect UFN table entry
110-116 PVAR 0 1

push PVAR#(opcode-110)

[required]

name len-1 stk level effect UFN table entry
117 PVARX 1 1

push PVAR#(alpha)

[required]

name len-1 stk level effect UFN table entry
120-126 FVAR 0 1
127 FVARX 1 1

Push the indicated FVAR.

[required]

name len-1 stk level effect UFN table entry
130-136 PVAR_ 0 0
137 PVARX_ 1 0

Set the indicated PVAR from tos, do not pop.

[required]

name len-1 stk level effect UFN table entry
140 GVAR 2 1
Push @(VALSPACE+2*(alpha,beta))

[required; may want to change to check if high order bit on, and UFN]

name len-1 stk level effect UFN table entry
141 ARG0 0 0 \ARG0

check TOS smallp, call UFN if not
check TOS between 1 and #args in current function
replace TOS with value of Ith variable, counting from 1

[to do range check, must fetch flags; if not fast, fetch BLINK.
#args is computable from difference of BLINK and IVAR]

[not required; not implemented yet]

name len-1 stk level effect UFN table entry
142 IVARX_ 1 0

14

store TOS as new value of IVAR alpha

[required]

name len-1 stk level effect UFN table entry
143 FVARX_ 1 0

free variable assignment. When value cell is global, perform GVAR_ operation
[can call \SETFREEVAR.UFN (atom# ???) instead]

name len-1 stk level effect UFN table entry
144 COPY 0 1

push TOS again

[required]

name len-1 stk level effect UFN table entry
145 MYARGCOUNT 0 1 \MYARGCOUNT

Push as a smallpos the number of arguments in current frame.
See ARG0. (probably should use common subroutine)

[not required; not implemented]

name len-1 stk level effect UFN table entry
146 MYALINK 0 1

Returns stack-index of beginning of ALINK of current frame.
This pushes the "ALINK" field of the current frame, with the low
bit turned off less ALINK.OFFSET (= 12Q).

[required]

name len-1 stk level effect UFN table entry
147 ACONST 2 1

Push {0, (alpha,beta)}
[required]

name len-1 stk level effect UFN table entry
150 ’NIL 0 1
151 ’T 0 1
152 ’0 0 1
153 ’1 0 1

Push the indicated constant.
[required]

name len-1 stk level effect UFN table entry
154 SIC 1 1
155 SNIC 1 1
156 SICX 2 1

Push:
 alpha as a smallposp,
 alpha as a smallneg (extend leftward with 1’s),
 (alpha,beta) as smallposp, respectively.
[required]

name len-1 stk level effect UFN table entry
157 GCONST 3 1

Push {alpha, (beta,gamma)}

15

[required]

name len-1 stk level effect UFN table entry
160 ATOMNUMBER 2 1

same as SICX. Different opcode for benefit of code walkers.
[required]

name len-1 stk level effect UFN table entry
161 READFLAGS 0 0 \READFLAGS

TOS is a virtual page# as a smallposp
TOS _ virtual memory flags of that page, as a smallposp
 Flags are:

bit 0: referenced
bit 2: write-protect
bit 3: dirty

 Vacant is denoted write-protect + dirty
[This is the same as XNovaOp ReadFlags, with AC0 -> loloc[TOS]]
[required]

name len-1 stk level effect UFN table entry
162 READRP 0 0 \READRP

TOS is a virtual page# as a smallposp
TOS _ the corresponding real page, as a smallposp
[This is the same as XNovaOp ReadRP, with AC0 -> loloc[TOS]]
[required]

name len-1 stk level effect UFN table entry
163 WRITEMAP 0 -2 \WRITEMAP

TOS-2 is a virtual page# as a smallposp
TOS-1 is a real page as a smallposp
TOS is a word of flags as a smallposp
Make the indicated virtual page# be associated with the given
 real page, with status flags. Real page is immaterial if flags = VACANT
Return the virtual page #
[This is the same as XNovaOp SetFlags, with AC0 -> loloc[TOS-2],
 AC1 -> loloc[TOS-1], AC2 -> loloc[TOS]]
[*not yet in Dorado]

name len-1 stk level effect UFN table entry
164 READPRINTERPORT 0 +1 \READPRINTERPORT

TOS _ current value from printer port, as a smallposp
Ufn if machine cannot do this.
[not in 4k]

name len-1 stk level effect UFN table entry
165 WRITEPRINTERPORT 0 0 \WRITEPRINTERPORT

Printer _ TOS, interpreted as a smallposp
Ufn if machine cannot do this.
[not in 4k]

name len-1 stk level effect UFN table entry
166 PILOTBITBLT 0 -1 \PILOTBITBLT

Performs Pilot-style bitblt.
TOS is constant zero, which can be used for maintaining state.
TOS-1 is a pointer to a bitblt table, which is 16-aligned.
[not required, implemented]

16

name len-1 stk level effect UFN table entry
167 RCLK 0 0 \RCLKSUBR

Store into words pointed to by TOS the processor clock [up to 32 bits, left justified].
[required]

name len-1 stk level effect UFN table entry
170 MISC1 1 0 \MISC1.UFN
171 MISC2 1 -1 \MISC2.UFN

These are miscellaneous opcodes that dispatch on alpha to provide
infrequent and/or machine-specific operations. To save microcode space (currently), the two opcodes
share the same dispatch table, i.e., the alpha’s do not overlap. There are two opcodes principally so
that there can be a reasonable ufn handler: MISC1 takes 1 arg, MISC2 takes
2. Current values for alpha:
 0 STARTIO[bits] Currently only for Dolphin ethernet. Perform

the "StartIO" function with bits given as smallp TOS.
(Resets Ethernet to known quiet state).

 1 INPUT[devreg]Perform input from some device. TOS is smallp
device register specification (on Dolphin: 4 bits of
task, 4 bits of device reg; on DLion: 4 bits absolute).
Returns TOS = smallp value input from device.

DLion codes:
 for INPUT {alpha = 1 mod 4}
 TOS = 00 mod 16, _ EIData
 TOS = 01 mod 16, _ EStatus
 TOS = 02 mod 16, _ KIData
 TOS = 03 mod 16, _ KStatus
 TOS = 04 mod 16, _ uSTATE
 TOS = 05 mod 16, _ MStatus
 TOS = 06 mod 16, _ KTest
 TOS = 07 mod 16, MP code 9122
 TOS = 08 mod 16, _ Version
 TOS = 09 mod 16, <12K> _ BusExt L <4K> MP code 9122
 TOS = 10 mod 16, <12K> _ BusExt M <4K> MP code 9122
 TOS = 11 mod 16, <12K> _ uFLmode <4K> MP code 9122
 TOS = 12 mod 16, MP code 9122
 TOS = 13 mod 16, MP code 9122
 TOS = 14 mod 16, MP code 9122
 TOS = 15 mod 16, MP code 9122
 2 OUTPUT[value, devreg] Perform output to some device. TOS is smallp

device register spec as with INPUT; TOS-1 is the smallp
value to output.

for DLion:
 for OUTPUT {alpha = 2 mod 4}
 TOS = 00 mod 16, <12K> BusExt L _ <4K> IOPOData _
 TOS = 01 mod 16, IOPCtl _
 TOS = 02 mod 16, <12K>uFLmode _ <4K> KOData _
 TOS = 03 mod 16, KCtl _
 TOS = 04 mod 16, EOData _
 TOS = 05 mod 16, EICtl _
 TOS = 06 mod 16, DCtl _
 TOS = 07 mod 16, uBBTime _ {display rate}
 TOS = 08 mod 16, uLispOptions _
 TOS = 09 mod 16, PCtl _
 TOS = 10 mod 16, MCtl _
 TOS = 11 mod 16, <12K> BusExt M _ <4K> MP code 9120
 TOS = 12 mod 16, EOCtl _
 TOS = 13 mod 16, KCmd _
 TOS = 14 mod 16, <12K> PPort _ <4K> MP code 9120
 TOS = 15 mod 16, POData _
 9 Dorado only, RWMUFMAN

name len-1 stk level effect UFN table entry

17

172 RECLAIMCELL 0 0 \GCRECLAIMCELL
Check type of TOS; let DTD be pointer to DTD of this type
If not LISTP then punt
Reclaim list:

code_PTR:cdrcode
if (code and 200q) = 0 then punt [or optional: if code = 0 then punt]
FreeListCell(PTR)
val_ deleteref(PTR:carfield) * deleteref CAR
if code # \CDR.NIL
 then PTR_PTR:pagebase + (code lsh 1) * point to cdr or lvcdr

[if (code and 200q) = 0 * optional
 then FreeListCell(PTR) * cdr indirect--free cell

 PTR_ GetBasePtr(PTR)]
if deleteref(PTR) * deleteref CDR
 then val_PTR

return val
FreeListCell(PTR):

PAGE _ address of PTR’s page
if PAGE:Nextpage < 0 then punt * only when page was full
PTR:cdrcode _ PAGE:nextcell
PAGE:nextcell _ word# of PTR
PAGE:count _ PAGE:count + 1

How to reclaim other types, roughly (needs type table change):
if Type bit "ok to reclaim" is off, call UFN
store DTD:FREELST in first two words of DATUM
store DATUM in DTD:FREELST

[not required; implemented for Listp on D0, non-listp on Dorado?, ? for 12K]

name len-1 stk level effect UFN table entry
173 GCSCAN1 0 0 \GCSCAN1
scan HTMAIN from (TOS)-1 to 0 for a cell with
collision bit on or else stack bit & reference cnt both are 0
if none found, return NIL
else return new index.

note: design allows NWWInterrupts to be processed
note: can actually perform GCRECLAIMCELL on the
cell indicated if stack bit off and ref cnt=0)

[not required; in all]

name len-1 stk level effect UFN table entry
174 GCSCAN2 0 0 \GCSCAN2

similar to GCSCAN1, but scan for word
with collision bit on or stack bit on.
Note: can optionally turn stack bit off, check if
count is 1 and zero entry, continue scanning
Note: design allows NWWInterrupts to be processed

[not required; in all]

name len-1 stk level effect UFN table entry
175 SUBRCALL 2
Call Bcpl subr number alpha with beta arguments.
The following have some microcode on the DLion:
 17’b Raid
 15’b Logout
 06’b BackGround
 11’b DspBout
 20’b Pup
 22’b SETSCREENCOLOR
 23’b ShowDisplay

18

name len-1 stk level effect UFN table entry
176 CONTEXT 0 0 \CONTEXTSWITCH
switch to context (TOS).

name len-1 stk level effect UFN table entry
177 (was audio)
[not required; not currently implemented]

name len-1 stk level effect UFN table entry
200-217 JUMP 0 JUMP
220-237 FJUMP 0 CJUMP
240-257 TJUMP 0 CJUMP
260 JUMPX 1 JUMP
261 JUMPXX 2 JUMP
262 FJUMPX 1 CJUMP
263 TJUMPX 1 CJUMP
264 NFJUMPX 1 NCJUMP
265 NTJUMPX 1 NCJUMP
Assorted jumps. The offset of the jump is given in the succeeding bytes, sign-extended to the left in
the case of the single-byte offsets. The offset is relative to the start of the instruction. The opcodes
with implicit offset run from +2 thru +21q.
JUMP* are unconditional.
FJUMP* and TJUMP* perform the jump only if TOS is NIL or non-NIL, respectively.
NFJUMPX and NTJUMPX perform the jump only if TOS is NIL or non-NIL, respectively.
Additionally, they pop the stack only if the jump is not taken.
[required]

name len-1 stk level effect UFN table entry
 266 AREF1 0 -1 %AREF1
Perform a one-dimensional array access:

(AREF1 array index)

1.) Check that array is a oned-array -- if not punt

2.) Check that 0 <= index < total size for array

3.) Compute (index + offset for array)

4.) Extract base, and type number -- and pass base, type number, index + offset to array-read

subroutine and return result on top of stack.

name len-1 stk level effect UFN table entry

 267 ASET1 0 -2 %ASET1

Perform a one-dimensional array set:

(ASET1 new-value array index)

1.) Check that array is a oned-array -- if not punt

2.) Check that 0 <= index < total size for array

3.) Compute (index + offset for array)

4.) Check array not read-only

5.) Extract base, and type number -- and pass newvalue, base, type number, index + offset to array-

write subroutine and return newvalue on top of stack.

19

name len-1 stk level effect UFN table entry
270-276 PVAR_↑ 0 -1
Store TOS into indicated PVAR, pop stack.
[required]

name len-1 stk level effect UFN table entry
277 POP 0 -1
Pop stack.
[required]

name len-1 stk level effect UFN table entry
300 POP.N 1 (variable)
POP (alpha+1) elements off top of stack, POP.N 0 = POP, POP.N 1 = POP POP, etc.

name len-1 stk level effect UFN table entry
301 ATOMCELL.N 1 0

if TOS is atom (0,,low), then replace with (alpha,,low+low), with carry into alpha. This is used for
getting the PList, Def, Val cell of litatoms. If TOS HI is not 0, call UFN. This will allow assigning
definitions, plists and values to non-litatoms.

name len-1 stk level effect UFN table entry
302 GETBASEBYTE 0 -1 \GETBASEBYTE
Retrieve byte at offset TOS from (TOS-1).

name len-1 stk level effect UFN table entry
303 INSTANCEP 2 0 \INSTANCEP.UFN
return T if typename is subtype of (alpha,beta), else return NIL.
(typename is word 0 of type’s DTD; DTD is DTDBase+(type# lsh 4) not locked down
supertype is word 15 of DTD, 0 means no supertype)
[currently only in 12k Dandelion]

name len-1 stk level effect UFN table entry
304 BLT 0 -2 \BLT

(BLT destinationaddr sourceaddr nwords)
Move nwords from source to destination. If nwords < prespecified constant (currently 10q), then
operation is uninterruptable, else must be prepared to service interrupts. On page fault or interrupt,
update stack according to how much is moved, and back up pc. Words are moved right to left (high
addresses to low), if it makes a difference. Result is unspecified.

name len-1 stk level effect UFN table entry
305 MISC10 2 -9 \MISC10.UFN
Perform miscellaneous operation on 10 arguments.
 alpha operation
 0 PIXELBLT
[not required; in 12k only]

name len-1 stk level effect UFN table entry
306 (unused)

name len-1 stk level effect UFN table entry
307 PUTBASEBYTE 0 -2 \PUTBASEBYTE

Store TOS at offset TOS-1 from (TOS-2), punting if TOS is not smallposp.
Currently ucode punts and ufn errors if offset isn’t a smallp.

20

name len-1 stk level effect UFN table entry
310 GETBASE.N 1 0 \GETBASE

TOS _ @(TOS+alpha) as a smallposp.

name len-1 stk level effect UFN table entry
311 GETBASEPTR.N

TOS _ 24-bit pointer @(TOS+alpha).

name len-1 stk level effect UFN table entry
312 GETBITS.N.FD
take 1 arg on stack (PTR) and 2 bytes (n, fd). fetches the "field" fd from the word PTR + n. fd is a
mesa field descriptor: the left 4 bits is the number of the "first" bit of the field, while the right 4 bits
is the width of the field-1. E.g., 0:17 is the full word, 0:0 is the leftmost bit.

name len-1 stk level effect UFN table entry
313 Unused

name len-1 stk level effect UFN table entry
314 CMLEQUAL 0 -1 CL:EQUAL
Takes two arguments off the stack and performs some cases of the
cl:equal predicate. Punts if either argument is a not an immediate
datum or a number.
[not required, not implemented on 4K and Dorado]

name len-1 stk level effect UFN table entry
315 PUTBASE.N 1 -1 \PUTBASE.UFN
Store TOS as word at location (TOS-1)+alpha
Pop (Return TOS-1).
Punt if TOS not smallposp. Note that UFN will specify extra byte for punt.

name len-1 stk level effect UFN table entry
316 PUTBASEPTR.N
 1 -1 \PUTBASEPTR.UFN

Takes (PTR, NEWVAL) on stack, leaves PTR on stack, stores
NEWVAL at PTR+N . (note: no punt case)

name len-1 stk level effect UFN table entry
317 PUTBITS.N.FD
 2 -1 \PUTBITS.UFN

Takes (PTR, NEWVAL) on stack, stores bits of NEWVAL at
FD field of PTR+N. Returns PTR.
Punt (UFN) if NEWVAL is not smallposp.

name len-1 stk level effect UFN table entry
320 ADDBASE 0 -1 \ADDBASE
321 VAG2 0 -1 \VAG2
322 HILOC 0 0
323 LOLOC 0 0

as before

name len-1 stk level effect UFN table entry
324 PLUS2 0 -1 PLUS

21

325 DIFFERENCE 0 -1 DIFFERENCE
326 TIMES2 0 -1 TIMES
327 QUOTIENT 0 -1 QUOTIENT

(same as I- versions, except UFN different. Optionally perform as F- opcode if one of arguments is
floating.)

name len-1 stk level effect UFN table entry
330 IPLUS2 0 -1 \SLOWIPLUS2
331 IDIFFERENCE 0 -1 \SLOWIDIFFERENCE
332 ITIMES2 0 -1 \SLOWITIMES2
333 IQUOTIENT 0 -1 IQUOTIENT
334 IREMAINDER 0 -1 IREMAINDER

unbox TOS & TOS-1
(if SmallPos then 0,,loloc, if SmallNeg then -1,,loloc,
typetest if FIXP then fetch 32 bit quantity)

perform 32x32 operation, and then
if overflow occurs, punt

[used to say: call OFLOWMAKENUMBER (atom ???)
with result mod 2^32 as two 16 bit smallposps.
This can’t work; what did we mean?]

If no overflow:
if hi part 0, return SmallPosHi,,lo
if hi part -1, return SmallNegHi,,lo
else need to return large integer. Two choices:
1) set up as if in call to MAKENUMBER (atom ???) with 2 args being
Hi and Lo part of result, as smallposps; or
2) Perform CREATECELL of type FIXP, and then store results
in generated box; return new box
[only smallpos x smallpos required on IPLUS, IDIFFERENCE;
Current implementation status:

Only smallpos x smallpos on ITIMES in both microcodes
only smallpos/smallpos for REMAINDER, QUOTIENT in Dorado]

name len-1 stk level effect UFN table entry
335 IPLUS.N 1 0 \SLOWIPLUS2

add TOS+alpha

name len-1 stk level effect UFN table entry
336 IDIFFERENCE.N 1 0 \SLOWIDIFFERENCE

subtract TOS-alpha

name len-1 stk level effect UFN table entry
337 unused

name len-1 stk level effect UFN table entry
340 LLSH1 0 0 \SLOWLLSH1
341 LLSH8 0 0 \SLOWLLSH8
342 LRSH1 0 0 \SLOWLRSH1
343 LRSH8 0 0 \SLOWLRSH8

unbox TOS, perform 32 bit operation and box results
as with 2 arg fns
[smallposp -> smallposp required, can UFN in other cases]

name len-1 stk level effect UFN table entry
344 LOGOR2 0 -1 \SLOWLOGOR2

22

345 LOGAND2 0 -1 \SLOWLOGAND2
346 LOGXOR2 0 -1 \SLOWLOGXOR2

see IPLUS etc above
[smallposp -> smallposp required, can UFN in other cases]
[32x32 bit implemented in Dorado, D0]

name len-1 stk level effect UFN table entry
347 LSH 0 -1 LSH

shift TOS-1 arithmetically by TOS.

name len-1 stk level effect UFN table entry
350 FPLUS2 0 -1 FPLUS2
351 FDIFFERENCE 0 -1 FDIFFERENCE
352 FTIMES2 0 -1 FTIMES2
353 FQUOTIENT 0 -1 FQUOTIENT

[not required; in Dorado, 12K]

name len-1 stk level effect UFN table entry
354 UBFLOAT2 1 -1 \UNBOXFLOAT2

alpha bytes:
0 ADD x+y
1 SUB x-y
2 ISUB y-x (currently unused)
3 MULT x*y
4 DIV x/y
5 GREAT x>y (returns T/NIL rather than unboxed floating)
6 MAX (max x y) currently unused
7 MIN (min x y) currently unused
8 REM (x remainder y), i.e. x-(floor x/y)*y
9 (UBAREF A I)
Same as AREF1, except that this one returns an unboxed number
implementations: Dorado has GREAT only 12K has all but REM

name len-1 stk level effect UFN table entry
355 UBFLOAT1 1 0 \UNBOXFLOAT1

alpha byte:
0 BOX (tos -> floating box (tos))
1 UNBOX (tos -> floating unbox (tos), float if FIXP)
2 ABS (currently unused)
3 NEGATE (currently unused)
implemented all on 12K

name len-1 stk level effect UFN table entry
 356 AREF2 0 -2 %AREF2

Perform a two-dimensional array access:

(AREF2 array i j)

1.) Check that array is a twod-array -- if not punt

2.) Check that 0 <= i < bound0

3.) Check that 0 <= j < bound1

4.) Compute (j + i * bound1)

5.) Extract base, and type number -- and pass base, type number, (j + i * bound1) to array-read
subroutine and return result on top of stack

23

name len-1 stk level effect UFN table entry
 357 ASET2 0 -3 %ASET2

Perform a two-dimensional array set:
 (ASET2 newvalue array i j)

1.) Check that array is a twod-array -- if not punt

2.) Check that 0 <= i < bound0

3.) Check that 0 <= j < bound1

4.) Compute (j + i * bound1)

5.) Check array not read-only

6.) Extract base, and type number -- and pass base, type number, (j + i * bound1) to array-write

subroutine and return newvalue on top of stack.

name len-1 stk level effect UFN table entry
360 EQ 0 -1

return T or NIL if (tos)=(tos-1)

name len-1 stk level effect UFN table entry
361 IGREATERP 0 -1 \SLOWIGREATERP
362 FGREATERP 0 -1 FGREATERP

[IGREATERP required; FGREATERP not implemented]

name len-1 stk level effect UFN table entry
363 GREATERP 0 -1 GREATERP

Same as IGREATERP (see PLUS, etc)
[not required]

name len-1 stk level effect UFN table entry
364 EQUAL 0 -1 EQUAL

If args are EQ, return T
If either arg is litatom, return NIL
else call UFN
[not required; not implemented]

name len-1 stk level effect UFN table entry
365 MAKENUMBER 2 -1 MAKENUMBER

TOS-1 and TOS are smallposp’s denoting the hi and lo halves of a 32-bit number.
Return a fixp that represents it:
 If loloc[TOS-1] = 0
 then return SmallPl,,loloc[TOS]
 elseif loloc[TOS-1] = 177777q
 then return SmallNeg,,loloc[TOS]
 else CREATECELL[\FIXP]
Store loloc[TOS-1] and loloc[TOS] as its hi and lo halves
return the new cell

[implemented on 4K, Dorado]

name len-1 stk level effect UFN table entry
366 BOXIPLUS 0 -1 \BOXIPLUS
367 BOXIDIFFERENCE 0 -1 \BOXIDIFFERENCE

Same as IPLUS2, IDIFFERENCE, except store result @TOS -- first arg is number box (for which
optionally check) -- and no overflow check.

24

name len-1 stk level effect UFN table entry
370 FLOATBLT 0 -3 \FLOATBLT

Miscellaneous floating point array ops; will eventually be renamed MISC5. Provides access to just
about everything the Weitek FP chip does. Operates on two arrays; puts results in a third.
args: (BASE1, BASE2, DEST, N).
Alpha bytes:

0 FLOATWRAP
1 FLOATUNWRAP
2 FLOAT
3 FIX
4 FPLUS
5 FDIFFERENCE
6 FDIFFERENCE
7 (FPLUS (ABS source1) (ABS source2))
10 (ABS (FDIFFERENCE source1 source2))
11 (ABS (FPLUS source1 source2))
20 FTIMES

[not required; implemented on 1108X only]

name len-1 stk level effect UFN table entry
371 FFTSTEP 0 -1 \FFTSTEP

Takes FFTTABLE as TOS; performs one FFT step thereupon.
[not required; implemented on 1108X only]

name len-1 stk level effect UFN table entry
372 MISC3 0 -1 \MISC3.UFN

Miscellaneous 3-arg opcode.
Alpha bytes:

0 EXPONENT(source dest n)
source is vector of floatps, dest is vector of words

store exponent of source for n in dest
1 MAGNITUDE

source is a vector of complex, dest is a vector of float
store magnitude of source in dest

2 FLOAT
source is a vector of word, dest is a vector of float

float source & store in dest
3 COMP

source is a vector of float, dest is a vector of complex
spread source into dest, storing 0’s.

4 BLKFMAX
5 BLKFMIN
6 BLKFABSMAX
7 BLKFABSMIN
8 FLOATTOBYTE

source is vector of float (must have even number of
elements), dest is vector of words

9 ARRAYREAD (base typenumber index)
Dispatch on typenumber and perform a typed get.

[not required; implemented on 1108X only]

name len-1 stk level effect UFN table entry
373 MISC4 0 -1 \MISC4.UFN

Miscellaneous 4-arg opcode.
Alpha bytes:

0 TIMES
1 PERM
2 PLUS
3 DIFF

25

4 SEP
6 \BITMAPBIT bitmap x y newvalue (optional)
7 ARRAYWRITE (newvalue base typenumber index)

Dispatch on typenumber and perform a typed put
[some confusion on how 0,2,3 different from corresponding TIMES, PLUS, DIF [not required;
implemented on 1108X only]

name len-1 stk level effect UFN table entry
374 reserved on D0, UPCTRACE on Dorado
375 SWAP 0 0
376 NOP 0 0
377 =

