
NS Character Set Issues:
Greg Nuyens. Aug 16,1984

This note describes a proposal for incorporating the NS character set
standard into Interlisp-D. This proposal will encompass the following areas:

--implementation of a "long" character data type
It specifically omits the following:
--external file representations. **
--the reworks necessary to fonts, etc. to attain DIG, though this proposal is

made with these issues in mind.
Definitions

The following terms are defined for use in the remainder of the document.
character: an instance of the "long" character data type.
byte: an 8 bit unsigned integer corresponding to the current Interlisp-D

character.
character set: the (conceptual) array of 256 characters into which all the

representable distinct characters have been separated. An example is
character set 0 which contains most but not all of the characters currently used
in Interlisp. For instance an umlaut is not included in character set 0.

font: A style in which characters are rendered. A font includes (conceptually)
an image for every representable character (2^16 - 256). A font is a member of
the cross product of Family, Weight, Slope, Face, Nominal Size, Rotation, and
Expansion . An example is TimesRoman 12 Bold Italic Regular Compressed
with 90 degree rotation. To contrast character set and font, note that only one
character set (0 *?*) contains the greek letter alpha, but every font contains a
rendering for that character. In practice few (no?) fonts will contain all the
images of all the characters.

Overview
Before discussing how these functions will change, an overview of the scheme

for the internal functions:
Error in IMAGEOBJ
GETFN: SKIO.GETFN

There will be two types of character data, the previously described long and
short characters. However, any single string will consist of only one type of
character. Thus strings as currently represented, (effectively byte arrays) will
continue to exist. However, there will also be arrays of long characters. Any
functions which receive arguments of mixed type (e.g. RPLCHAR given an
string of short chars and a long char to replace with) will produce results
composed of long chars only.

Thus, the current implementation of substrings (as "tails" of strings) will not
suffice, since the original string may be coerced upward to a long char string by
an operation occurring after a substring has been returned. The plan is to use
forwarding pointers in string space and store substrings as
<header,offset,length> triplets. Thus when a short char string is coerced
upward into a long char string, the original header will have a pointer to the
new location. Any substrings returned previous to the coercion will still be
valid, since they reference the (now indirect) original header. The offsets will
always be scaled by a bytes-per-character value implicit in the type of string (1
for short strings, 2 for long strings).

This scheme guarantees the advertised property of substrings that they are
indeed shared tails. That is, a destructive change to a substring will affect the
string. This will be true regardless of any coercion of the string that occurs.

2

Also recognize that any coercions performed on substrings will change the
representation of the whole string.

Changes to Interlisp Functions
In previous discussions the two following lists of functions affected by this

proposal were identified:
First the functions which deal with the internal representation of character

data:
RPLSTRING(X N Y)

this function must change so that if either argument is "long", both
are coerced to long. For the character argument, this is simply to
add the default character set. For the string however, it will be
necessary to copy the string coercing each character by appending
the default character set.

RPLCHARCODE(X N CHARCODE)
must now take long or short charcodes, handling them as will
RPLSTRING.

GNC{CODE}(X)
will always return an atom representing a long character (Does
this mean having all the single character atoms? NO--they can be
MKATOMed on the fly.) {or for GNCCODE, a long charcode}

GLC{CODE}(X)
as above

NTHCHAR{CODE}(X N FLG RDTBL)
will always return an atom representing a long character.

NCHARS(X FLG RDTBL)
Returns number of characters independent of representation.
When FLG is T the prin-2 length (as yet upspecified for long chars)
will be used.

STRPOS{L}(PAT STRING START SKIP ANCHOR TAIL) (and
MAKEBITTABLE)

If either PAT or STRING is constructed of long chars, then the
comparison will take place as though both were long. However, no
destructive changes will be made.

CHARACTER(N)
Always produces an atom whose printname is the long character
whose representation is N.

CHCON(X FLG RDTBL)
Still produces a list of charcodes. These may be short or long
charcodes

SUBSTRING(X N M OLDPTR)
Performs the substring operation, guaranteeing the EQ invariant
for substrings. The internal rep’n will be the header together with
the offset and length, so that if upward conversion later happens,
shared tails remain.

ALLOCSTRING(N INITCHAR OLD)
As before except, that if INITCHAR > 255 then the resulting
string will be a long string. (Coercing the OLD string’s char array
as needed.)

3

MKSTRING(X FLG RDTBL)
As before, except the PName may be long.

CONCAT{LIST}(U ...) {L*}
If any of the arguments are long strings, the result is a long string.

STREQUAL
This will be true when the characters are the same, regardless of
the representation.

and the following functions which must know the external representation of
character data

FILEPOS
SETFILEPTR
BIN
READC
\INCHAR
\OUTCHAR
COPYBYTES
COPYCHARS

Efficiency Concerns
the common case of bytes stays fast (though some penalty)
readc is already coercing bytes upward into smallp’s why not into long chars?
will it be necessary to have all 2^16 - 256 unit length pname atoms exist.

(what does readc currently return)?
 The intention is that the common case of short char arguments will retain

their current efficiency.

