
Interlisp-D AR Fields

Interlisp-D software support and development uses an "Action Request" data
base system for keeping track of bug reports and requests for features. We
take feature requests as serious as bug reports -- don’t hesitate to ask.
Users are encouraged to submit ARs, either via mail, electronic mail, or (for
internal Xerox users) directly using the AREDIT facility within Interlisp-D.
The following documents the fields we use in ARs and what they mean:

AR identification

Number: Every AR has a number, which increases by one for each AR submitted.
AR numbers are *never* recycled, and ARs are *never* deleted. The AR number is
automatically generated.

Source: This is an arbitrary string which should contain the name and
electronic address of original customer or internal Xerox users reporting
problem. Customers should be identified by "Liason (Customer name)", e.g.,
Raim.pasa (Bill White @ Teknowledge). This field is used in sending mail back
to find out more technical details, or to notify people about the change in
status. If multiple people report the same bug, each one should be included in
the Source field.

Problem Description

Subject: A terse summary of problem, enough to identify it uniquely. "FOO
doesn’t work" or "Floppy problem" is not good enough. Think of yourself as a
newspaper headline writer: "Attempt to write file when Floppy door open causes
awful noise". Implementors may change the Subject field as more details about
the true nature of the problem becomes apparent. Feature requests generally
start with "Want", e.g., "Want way to make windows triangular rather than
square."

Problem Type: What kind of problem report or feature request:
Bug The system does not work as documented.
Implementation The system works, but the internal structure is wrong.

(Generally submitted by other implementors or looking at the
sources.)

Interface The design of the user interface is wrong. Includes problems in
the way in which things display, as well as program callable
structures.

Feature Request Request for a new feature or set of facilities
Documentation The system works, but the documentation is wrong, unclear,

or incomplete.
Performance The system works, but it is too slow doing the described

operation.

Description: This field should contain the complete description of problem or
request, including any subsequent discussion. If bug reports come in via
electronic mail, put the whole message in this field. Edit relevant info into
the beginning of the Description, especially if it summarizes what the problem
really is.

Frequency: How reproducable is the problem? Leave blank if irrelevant (e.g.,
feature request.) Generally only relevant for bug reports. One of:
Everytime reproducible every time.
Intermittent doesn’t always happen.
Once saw it happen once.

Impact: How seriously does it affect your ability to get work done, value of
Interlisp-D, etc. The names apply to bug reports, but feature requests should
be rated along analogous lines.
Fatal causes system crash, loss of work, etc. requirement for project

completion.
Serious can be worked around but seriously interferes with work, requires

substantial reimplementation
Moderate tolerable, but clearly a problem, responsibility of Interlisp

development

2

Annoying annoying problem, minor request for new feature that "would be
nice"

Minor may be some dispute about whether it is even a bug, very minor
feature request.

Test Case: This field isn’t used for what the name might imply: it should be
a list of the files needed to recreate problem. Recipe for reproducing the
problem (which is what you might think a Test Case was for) should be in the
Description.

Lisp Version: This should be either the release name (Fugue.1, Carol,
Harmony) and MAKESYSDATE in which the problem occurs (or the feature doesn’t
occur.) The Lisp AREDIT package attempts to fill this in; if you submit from a
different system that you are running in, please change it. If its a
documentation problem, include the date of the documentation.

Machine: What machine does problem occur on (one of 1108, 1132, 1100). Leave
blank if *all*.

Disk: What kind of disk is on the machine? (only fill in if relevant to AR.)
Constrained to have the known disk types for Machine.

Microcode Version: (automatically generated, delete if known to be irrelevant,
e.g., for documentation problems.)

Memory Size: (automatically generated. Delete if known to be irrelevant.)

File Server: If problem deals with communication, what server are you talking
to? (This field should really have "Server" on it, rather than File Server.)
One of VAX/VMS, VAX/UNIX, 8037, etc.

Server Software Version: As appropriate for the server you’re talking to.

System: Subsystem: Category & sub-category of problem type. Subject to change.
System includes: Lisp Software, System Software, Text and Graphics,
Documentation, IO Architecture. Generally these are filled in by LispSupport,
as it corresponds more to our own internal project structure.

Problem disposition

Workaround: If relevant, this field can contain a known procedure to work
around problem until it is fixed; generaly a short recipe belongs here.

Status: Status of AR as it moves thru the system:
New All ARs start out as New.
Open Has been looked at by LispSupport; all fields are filled in & has

been assigned.
Fixed problem fixed, in LispCore loadup. The In/By: field is set to the

next release name. The Assigned-to: field is set.
Closed System with fix in it has been tested & released.
Declined Request for feature officially *never* going to be implemented

(e.g., we think its a bad idea). Bug report considered spurious
(we don’t think it is a bug)

Superseded Another AR includes the problem described in this one. In this
case, the Subject of this AR should include the AR# of the one
that supercedes it, and the superceding AR should contain the
union of information in this one.

Obsolete e.g., module in which problem reported is no longer supported.

Incomplete The information submitted is not enough to take action -- not
enough information to identify the bug, or the feature request
doesn’t spell out in enough detail what is wanted. This is
different from Declined in that the request is considered valid,
but open for more detail.

In/By: What version of Interlisp-D has/will have this problem fixed?
(E.g., Harmony, Intermezzo, Jazz, Fugue.6, etc.)

3

Disposition: Brief notes explaining changes to status, plus automatically
generated description of who changed status when.

Difficulty: Rough estimate filled in by developer on scope of problem.

Easy < 1 week to fix

Moderate < 1 month to fix

Hard < 6 months to fix

Very Hard > 6 months to fix

Impossible can’t be fixed

Design requires a design

Priority: Development’s estimate of whether it will be in the "next" release.
(Changes from release to release).

Absolutely Release will be held if not completed.

Hopefully Major release goal. Schedule slip admitted, but likely to get
completed.

Perhaps Will get implemented if other revisions in same area are
completed.

Unlikely Unlikely to be included in the next release.

Assigned To: The developer who ’took care’ of this AR, either by fixing it or
declining it. Currently only after AR is fixed.

Attn: The developer(s) who should look at this AR. We’re moving away from
relying on this.

Submitter: The user name (and registry) of the person who actually did the
Submit. Automatically generated by AR submit, not editable.

Date: The date the AR was originally submitted. Automatically generated by AR
submit, not editable.

Edit-By: person who edit this AR last. Automatically generated by the Lisp
AR edit tool. (The Disposition field contains more info about edits history.)

Edit-Date: date when this AR was last edited. Also automatically generated.

