
The DLion Low Level Disk Drivers

Last revised: 26-Jun-84 23:13:59 by Mitch Lichtenberg

This file is an attempt to explain the operation of the Dandelion rigid disk interface, the
microcode, and how Lisp constructs and uses disk IOCBs to perform disk operations.

DISK DRIVE INTERFACE

The Dandelion’s central processor divides its time among the high speed I/O devices: the
ethernet, the rigid disk, the I/O processor, and the display. The "I/O Page" is located in a well-
known (to the microcode and Lisp) area of virtual memory, and it holds locations for
communication between the different "micro-tasks."

Currently, the Dlion’s Disk IOCB is the second word on the I/O page (that is, (\ADDBASE
\IOPAGE 1)). Memory locations placed on this page must be up to 16 bits long, which
constrains the address to be within the first 256 pages.

The IOCB page is used to store parameters and other information that is picked up by the
microcode. When one wants to initiate an I/O operation, it can be done by depositing the
parameter block onto the IOCB page (somewhere) and then placing the location (16 bits) of the
parameter block onto the device’s "mailbox" on the I/O page. When the device notices that
something has been deposited onto its special I/O page location, it will read in the parameters,
execute the operation, and reset the flag to zero to indicate that the operation is complete.
(*Note: This is not completely true for the disk.). So, device I/O in Lisp usually looks like the
following:

(\BLT (\ADDBASE \IOCBPAGE IOCBDisplacement) IOCB IOCBLen)
... or an alteration of an existing IOCB on the IOCB page ...

(\PUTBASE \IOPAGE DeviceCSBDisplacement
 (\LOLOC (\ADDBASE \IOCBPAGE DeviceIOCBDisplacement)))

(until (ZEROP (\GETBASE \IOPAGE DeviceCSBDisplacement)))

The \PUTBASEs and \GETBASEs usually come in the form of record package macros.

The reason why the disk does not follow the usual \IOPAGE convention of resetting its CSB to
zero is because the drivers were meant to cause interrupts when disk I/O is finished. Lisp does
not currently utilize this feature, so to poll the IOCB to detect when it has been completed, the
IOCB status is set with some unused bits activated, and when the IOCB completes, the disk
microcode will fill in the status and wipe out those bits as a side effect.

DISK IOCBS

To make life easier on the Dandelion’s disk microcode, the implementors thought it to be a good
idea to have the microcode emulate some kind of primitive "instruction set." So, when you want
disk I/O, you have to write a little "program" in "IOCB Machine Language" to accomplish it.

2

Fortunately, these IOCBs are still around after booting, and Lisp leaves them in place but
changes the fields to do more complicated operations.

The entire IOCB page is divided into three sections:

1. The Data Field:

This portion of the IOCB page contains mostly scratch space for the microcode and
information for the programmer. Of particular interest here are the Header and Label
"template" fields. For read operations, these fields are modified by the microcode,
whereas on verify and write operations, they are just read.

The header field corresponds to the header records that were written on the disk when it
was formatted. They contain identification information for the microcode - the sector’s
track, cylinder, and head numbers. These records are never written to. The usual
operation on this field is verify, and it is primarily used to indicate to the microcode
which sector is which on a given track, and to provide a security mechanism for the
microcode. This template is also used to store the current cylinder number for the disk
drive, and it is the place where the cylinder, track, and sector numbers are stored prior to
a disk operation.

The label field is more general-purpose. In the pilot world, the ID number of a file and
the page’s relative location within the file are stored in the label field. For booting, a
coded pointer is also stored here to lead the boot microcode from one sector to the next.

Note that the header and label fields must be in these locations on the IOCB page. (they
may not be somewhere else in VM). The pointers to these fields from within the
parameter blocks are only 16 bits long, so the headers and labels must be kept here.

2. The Parameter Area

The second portion of the IOCB page is the parameter areas for the IOCB programs.
There are two of these IOCB parameter areas left over after booting, but Lisp only uses
one of them. The information contained in the parameter block includes the run length,
the type of operation to use (which operation, read/write/verify, to use on each field), the
virtual page number of the disk buffer, and information on how to handle errors. They
must be aligned on 16 word boundaries, due to the way that they are loaded into the
micro-registers inside the CP.

3. The IOCBs

The third portion of the IOCB page is contains the actual IOCBs themselves. There are
two basic types of IOCBs:

1. Seek IOCB:

The Seek IOCB is complete as it stands. (it has no parameter areas to read in like
the transfer IOCB has). The Lisp code fills in the fields for the number of
cylinders and the direction to seek, and the IOCB’s code steps the drive head in
the given direction for the given number of steps. There are no verify operations
on seeks, so it is the programmer’s responsibility to remember which track
number the head is currently positioned at. If a disk drive gets lost, a recalibrate
operation is necessary. This can be accomplished by setting up an IOCB to step

3

out one track, and continually running it until the Track00 bit of the disk
controller status register becomes T. This register can be read with the function
(\DEVICE.INPUT 3) and the fields can be found in the record
DLDISK.STATUS on DISKDLION.

2. Transfer IOCB:

The Transfer IOCB reads in a parameter area of 17 words, executes the transfer
operation, and exits.

DISK IOCB MACHINE LANGUAGE

As was mentioned before, the disk microcode emulates a very small instruction set (to keep the
code size down and increase flexibility). This instruction set is as follows:

 Opcode Operation

 8000 xxxx Send word xxxx to disk controller register KCtl.
 0007 ssss Set status bits from ssss

 0000 aaaa Increment number in location aaaa, and skip if zero.
 0002 aaaa Unconditional jump to location aaaa.
 0006 Finish up IOCB.
 0400 aaaa Write status to location aaaa.
 0005 aaaa Load parameter table from locations starting at aaaa.
 0800 Transfer a run of pages, skip of no error

Some interesting "8000 xxxx" commands follow:

 Opcode Operation

 8000 0422 Wait for pending seeks to complete. (InsureSeekComplete)
 8000 0420 Seek step IN (positive direction)
 8000 04A0

 8000 0460 Seek step OUT (negative direction)
 8000 04E0

Inside the parameter areas, the following "code numbers" are important:

Code Meaning

001E Abort on NotReady, WriteFault, Overrun, or CRC errors
001C Abort on NotReady. WriteFault, Overrun
001F Abort on NotReady, WriteFault, Overrun, CRC, or Verify

OTHER NOTES, RESTRICTIONS, ETC.

To specify the length of the data field, "8100" is used instead of "0100". Setting the high bit of
the data length field causes the microcode to increment the virtual page number after each page
is transferred. This is used primarily for multiple page runs.

4

The length of the header and label fields must be decremented for verify operations.

It is impossible to follow a write operation with anything other than a write operation. That is, if
you write the label field you must write the data field. Otherwise, the tail of the label write
operation will trash the data field. (Something in the microcode or disk controller causes this,
and it cannot be avoided!)

The files [Eris]<Lispcore>Dlion>DiskBootIOCBs.bravo and
[Eris]<Lispcore>Dlion>DiskTest.dm contain many sample IOCBs. They are
invaluable anyone tinkering with the Dlion disk system.

THE LISP DLION DISK HEAD

The heads for the DLion disk are stored on the file DISKDLION in the sources directory. The
following is a description of the functions in this file and their purposes:

(\DL.DISKINIT) [Function]

Determines the shape of the disk drive and sets up variables as follows:

\DISKTYPE: One of \SA4000, \SA1000, \Q2040, \Q2080
SEC/HD: Sectors per head on this disk drive
SEC/CYL: Sectors per cylinder on this disk drive

The data for each drive follows:

Drive Sec/Hd Sec/Cyl Heads
SA4000 28 224 8
SA1000 16 64 4
Q2040 16 128 8
Q2080 16 112 7

(\DL.RECALIBRATE) [Function]

Attempts to find track zero of the disk drive by repeatedly stepping the drive out and checking
the status word for Track00 indication. If more than 512 steps are made and Track00 still is
not true, a call to RAID is made.

(\DL.DISKSEEK CYL) [Function]

Seeks disk drive to cylinder CYL, and updates information in the header template.

(\DL.TRANSFERPAGE DA BUFFER MODE LABEL [Function]
 RUNLENGTH NORAIDFLG)

"User" entry (that is, DLion file system entry) to the disk head. DA is the disk address, which
may be a fixp. The remaining args are the same as those for \DL.XFERDISK, as described
below:

5

(\DL.XFERDISK CYL HD SEC BUFFER MODE LABEL [Function]
 RUNLENGTH NORAIDFLG)

Starts a Disk I/O operation. The argument format is meant to be compatible with the old
\DL.XFERDISK. This minimizes the confusion with changing the swapper. New features
include the ability to work with labels and an error recovery mechanism. If a disk error occurs,
the \DL.XFERDISK function will retry the operation up to ten times. If it fails, it will do a
(\DL.RECALIBRATE) first and try ten more times before finally calling RAID. Arguments
are as follows:

CYL Cylinder number of disk address

HD Head number of disk address

SEC Sector number of disk address

Note: These numbers will be normalized automatically. For example, it is
permissible to transfer Cylinder 0, Head 440, Sector 1215. \DL.XFERDISK
will change that into a meaningful value. This is how the swapper works - see
below.

BUFFER A pointer to the first page that will be used in the disk operation. Note: The
page must be locked down, touched (referenced), and dirty, or else the swapper
will not perform properly!

MODE One of the following:

NIL Read pages , read labels (VRR operation)
T Write pages, read labels (VRW operation)
VRR Read pages, read labels
VVR Read pages, verify labels
VVW Write pages, verify labels
VWW Write pages, write labels
VRW Write pages, read labels (used by swapper)

LABEL A pointer to the label record (10 words), or NIL if you don’t want to use a label
record. The label must be locked down to prevent page faults inside the
\DL.XFERDISK routine.

RUNLENGTH The number of consecutive pages to transfer, or NIL for one. There are
restrictions on multiple page runs: To do a multiple page run, the virtual page
numbers of the buffer pages must be sequential, and the run may not cross
cylinder boundaries. (See function \CYLBOUNDCROSSP below).

NORAIDFLG Normally, \DL.XFERDISK will bomb after failing to do an I/O operation
("failing" does not include verify errors). (It will call RAID). To supress this,
set NORAIDFLG to T and disk errors will be returned as status to the caller.

6

(\CYLBOUNDCROSSP DA1 DA2) [Function]

Predicate returns T if DA1 and DA2 are on different cylinders, NIL otherwise. Note: This
function is not locked down.

(\DL.DISKOP IOCB) [Function]

Passes IOCB to the disk microcode (which starts the I/O operation), waits for it to complete, and
returns the status.

(\D2V CYL HDSEC) [Function]

Returns the disk address of the page on cylinder CYL and with encoded head and sector
information in HDSEC (left byte is head number, right byte is sector number)

(\V2HDSEC DA) [Function]

Returns encoded head and sector information from disk address.

(\V2CYL DA) [Function]

Returns cylinder number from disk address.

(\DL.ACTONVMEMPAGE FILEPAGE BUFFER WRITEFLG) [Function]

Performs a file operation on the virtual memory file. FILEPAGE is a file relative page number
to transfer, BUFFER is the page number for the transfer, and WRITEFLG is passed to
\DL.XFERDISK as the MODE parameter. It is usually T or NIL. This function is implemented
by figuring the starting address triple of the beginning of the VMEM file and computing the
number of pages into the disk from there that the page is located (skipping bad pages), then
supplying this information as the sector number to \DL.XFERDISK, which normalizes it
internally to a real disk address.

(\DL.ACTONVMEMFILE FILEPG BUFFER NPGS WRITEFLG) [Function]

Performs multiple file operations on the virtual memory file. FILEPG is the starting file page
number (relative to the start of the VMem file). BUFFER is a pointer to the first page in the
group to be transferred. NPGS is the number of pages to transfer. WRITEFLG passed to
\DL.ACTONVMEMPAGE as the WRITEFLG parameter. This function will transfer a run of
pages to or from the virtual memory file.

(\DLDISK.GETSTATUS) [Macro]

Returns the status of the disk controller in a smallp. Use the record definition
DLDISK.STATUS to understand its contents. This macro expands to (\DEVICE.INPUT 3)

7

DLDISK.STATUS [Record Definition]

Record defintion (access functions) for reading the result of (\DLDISK.GETSTATUS).
Contains the followng fields:

TRACK00 True if on track zero
HEADSELECT Curreny head number
SA1000 True if controller is in SA1000 mode
DRIVENOTREADY True if drive is not ready
WRITEFAULT True if last operation caused a write fault
OVERRUN True if last operation caused an overrun
CRCERR True if last operation caused a CRC error
VERIFYERR True if last operation caused a verify error

IOCBPAGE [Record Definition]

This record contains the layout of the IOCB page. The fields are as follows:

LASTIOCBSTATUS Last status reported while running IOCB
NEXTIOCG Short pointer to next IOCB in chained IOCBS. This is not currently

used.
SEEKIOCBLOC Contains the location of the SEEK IOCB.
XFERIOCBLOC Contains the location of the TRANSFER IOCB
VRRIOCBLOC Contains the location of the VRR Parameter block
VVRIOCBLOC Contains the location of the VVR Parameter block
HCYLINDER Header Template: Contains current cylinder number. Changed in all

operations.
HHEAD Header Template: Contains current head number. Changed in all

operations.
HSECTOR Header Template: Contains current sector number. Changed in all

operations.
LID Label Template: 5 words of ID number for the label.
LPAGELO Label Template: Low 16 bits of page-within-file information in the

label.
LPAGEHI Label Template: High 7 bits of page number within file.
LFLAGS Label Template: Flag storage for boot code
LTYPE Label Template: Type of page (type of file in which the page is a part)

(16 bits)
LBOOTLINKCHAIN1 Label Template: Boot chain info
LBOOTLINKCHAIN2 Label Template: Boot chain info
PRUNLENGTH Parameter Block: Run length (number of pages)
PLABELCMD Parameter Block: Code for operation on label field
PLABELLEN Parameter Block: Length of label field
PLABELABORT Parameter Block: Conditions for aborting transfer & error codes to

scan for
PDATACMD Parameter Block: Code for operation on data field
PDATALEN Parameter Block: Length of data field
PVPAGE Parameter Block: Virtual page number of memory buffer

8

PDATAABORT Parameter Block: Conditions for aborting transfer & error codes to
scan for

PTERMCOND1 Code to halt hardware after transfer
PTERMCOND2 Code to halt hardware after transfer
SCYLINDERDISPLACEMENT Seek IOCB: Number of cylinders to move in seek

operation.
SSEEKCMD1 Seek IOCB: First part of seek command
SSEEKCMD2 Seek IOCB: Second part of seek command

DISK IOCB PAGE

This section contains the contents of the IOCB page.

Displacements are relative to the start of the IOCB page.

Lines with asterisks following the opcode indicate fields for the user to fill in.

Address Op/Data Comment

0100: 000B ; Special Block Type
0101: 00FE ; Word count
0102: 0000 ; Not used
0103: 0000 ; IOCB Status (filled in by uCode)
0104: 0000 * ; Next IOCB address (or 0 for last one)
0105: 0120 ; Address of seek IOCB
0106: 0132 ; Address of transfer IOCB
0107: 0140 ; Address of verify-read-read parameter area
0108: 0160 ; Address of verify-verify-read parameter area
0109: 0180 ; Address of verify-verify-write parameter area
010A: 01A0 ; Address of verify-write-write parameter area

010B: 0000 * ; Header template: Cylinder number
010C: 0000 * ; Header Template: Head[0..7], Sector[0..7]

010D: 0000 * ; Label Template: Word 0 \
010E: 0000 * ; Label Template: Word 1 \
010F: 0000 * ; Label Template: Word 2 > ID Number for page
0110: 0000 * ; Label Template: Word 3 /
0111: 0000 * ; Label Template: Word 4 /
0112: 0000 * ; Label: Page # low [bits 7..22]
0113: 0000 * ; Label: [Pg# Hi 0..6, Pad 7..12, Flags 13..15]
0114: 0000 * ; Label: Type #
0115: 0000 * ; Label: Unused
0116: 0000 * ; Label: Unused
0117: 0000 ; Filler for 16 wrd boundary lineup
0118: 0000 ; Filler for 16 wrd boundary lineup
0119: 0000 ; Filler for 16 wrd boundary lineup
011A: 0000 ; Filler for 16 wrd boundary lineup
011B: 0000 ; Filler for 16 wrd boundary lineup
011C: 0000 ; Filler for 16 wrd boundary lineup
011D: 0000 ; Filler for 16 wrd boundary lineup
011E: 0000 ; Filler for 16 wrd boundary lineup
011F: 0000 ; Filler for 16 wrd boundary lineup

9

Parameter Area for Verify-Read-Read IOCB

0140: 0000 * ; Number of sectors to read
0141: 0031 ; Max #+1 of secs that may be skipped searching
0142: 0432 ; Verify header field
0143: 0001 ; word count-1 of header field
0144: 010B ; address of header field
0145: 001C ; Abort on NotReady. WriteFault, Overrun
0146: 0003 ; skip to next sector if CRC/Vrfy err on header
0147: 0430 ; Read label field
0148: 000C ; word count of label field
0149: 010D ; Address of label field in IOCB
014A: 001E ; Abort on NotReady, WriteFault, Overrun, CRC
014B: 0430 ; Read Data Field
014C: 8100 ; Length of data field (256 words)
014D: 0000 * ; virtual page # of buffer
014E: 001E ; Abort on NotReady, WriteFault, Overrun, CRC
014F: 0420 ; control word to halt hw after each field
0150: 0426 ; control word to find sector mark for header

Parameter Area for Verify-Verify-Read IOCB

0140: 0000 * ; Number of sectors to read
0141: 0031 ; Max #+1 of secs that may be skipped searching
0142: 0432 ; Verify header field
0143: 0001 ; word count-1 of header field
0144: 010B ; address of header field
0145: 001C ; Abort on Not Ready. Write Fault, Overrun
0146: 0003 ; skip to next sector if CRC/Vrfy err on header
0147: 0432 ; Verify label field
0148: 000B ; word count of label field (-1 for verify)
0149: 010D ; Address of label field in IOCB
014A: 001F ; Quit on NotRdy, WrtFlt, Ovrrn, CRC, Verif Err
014B: 0430 ; Read Data Field
014C: 8100 ; Length of data field (256 words)
014D: 0000 * ; virtual page # of buffer
014E: 001E ; Quit on NotReady, WriteFault, Overrun, or CRC
014F: 0420 ; control word to halt hw after each field
0150: 0426 ; control word to find sector mark for header

Parameter Area for Verify-Verify-Write IOCB

0140: 0000 * ; Number of sectors to read
0141: 0031 ; Max #+1 of secs that may be skipped searching
0142: 0432 ; Verify header field
0143: 0001 ; word count-1 of header field
0144: 010B ; address of header field
0145: 001C ; Abort on Not Ready. Write Fault, Overrun
0146: 0003 ; go to next sector if CRC/Verfy err on header
0147: 0432 ; Verify label field
0148: 000B ; word count of label field (-1 for verify)
0149: 010D ; Address of label field in IOCB
014A: 001F ; Stop on NotRdy, WrtFlt, Ovrrn, CRC, Verif Err
014B: 043B ; Write Data Field
014C: 8100 ; Length of data field (256 words)
014D: 0000 * ; virtual page # of buffer
014E: 001C ; Abort on NotReady, WriteFault, Overrun
014F: 0420 ; control word to halt hw after each field
0150: 0426 ; control word to find sector mark for header

Parameter Area for Verify-Write-Write IOCB

0140: 0000 * ; Number of sectors to read

10

0141: 0031 ; Max #+1 of secs that may be skipped searching
0142: 0432 ; Verify header field
0143: 0001 ; word count-1 of header field
0144: 010B ; address of header field
0145: 001C ; Abort on Not Ready. Write Fault, Overrun
0146: 0003 ; skip to next sector if CRC/Vrfy err on header
0147: 043B ; Write label field
0148: 000C ; word count of label field
0149: 010D ; Address of label field in IOCB
014A: 001C ; Abort on Not Ready. Write Fault, Overrun
014B: 043B ; Write Data Field
014C: 8100 ; Length of data field (256 words)
014D: 0000 * ; virtual page # of buffer
014E: 001C ; Abort on NotReady, WriteFault, Overrun
014F: 0420 ; control word to halt hw after each field
0150: 0426 ; control word to find sector mark for header

Parameter Area for Verify-Read-Write IOCB

0140: 0000 * ; Number of sectors to read
0141: 0031 ; Max #+1 of secs that may be skipped searching
0142: 0432 ; Verify header field
0143: 0001 ; word count-1 of header field
0144: 010B ; address of header field
0145: 001C ; Abort on Not Ready. Write Fault, Overrun
0146: 0003 ; skip to next sector if CRC/Vrfy err on header
0147: 0430 ; read label field
0148: 000C ; word count of label field
0149: 010D ; Address of label field in IOCB
014A: 001C ; Abort on Not Ready. Write Fault, Overrun
014B: 043B ; Write Data Field
014C: 8100 ; Length of data field (256 words)
014D: 0000 * ; virtual page # of buffer
014E: 001C ; Abort on NotReady, WriteFault, Overrun
014F: 0420 ; control word to halt hw after each field
0150: 0426 ; control word to find header sector mark

Disk IOCB program for Seek

0152: 0000 * ; Number of cylinders to move (negative)
0151: 8000 ; Insure that the seek
0152: 0422 ; completed from before
0153: 0007 ; clear out the status bits that
0154: 0000 ; are not used in a seek operation
0155: 8000 ; send a step pulse
0156: 0000 * ; (direction is filled in)
0157: 8000 ; finish sending step pulse
0158: 0000 * ; (direction is filled in)
0159: 0000 ; increment remaining distance
015A: 0152 ; in IOCB field, and skip if zero
015B: 0002 ; Jump back to the step
015C: 0155 ; loop.
015D: 0006 ; Clean up and finish IOCB
015E: 0000
015F: 0000
0160: 0400 ; quit and write status back
0161: 0103 ; into status word

Disk IOCB program for Transfer

0162: 0005 ; Load parameters from
0163: 0000 * ; parameter table

11

0164: 8000 ; Wait for any pending seeks
0165: 0422 ; to complete.
0166: 0800 ; transfer run of pages
0167: 0002 ; if there was an error,
0168: 0169 ; finish up anyways (we’re done!)
0169: 0006 ; Clean up and finish IOCB
016A: 0000
016B: 0000
016C: 0400 ; quit and write status back
016D: 0103 ; into status word.

End of file {Eris}<LispCore>Internal>Doc>DLionDiskDriver.TEdit.

