
FLOPPY

INTRODUCTION

You are reading the Introduction. First comes a section on the low
level 1108 floppy implementation. This includes discussion of
FLOPPYIOCBs, DISKADDRESSes, and FLOPPYRESULTs. The
low level floppy command functions are described in this section.

Next comes a section on Pilot floppy basics. This section describes
file device \PFLOPPYFDEV and the functions installed on
\PFLOPPYFDEV which are called by generic FILEIO functions. We
describe the peculiar marker pages (PMPAGEs)...

LOW LEVEL FLOPPY

This section describes the lowest level code of the 1108 FLOPPY
implementation.

Miscellaneous Global Variables

\FLOPPY.CYLINDERS (Variable)

\FLOPPY.TRACKSPERCYLINDER (Variable)

\FLOPPY.SECTORSPERTRACK (Variable)

The number of cylinders on the floppy, the number of tracks per
cylinder on the floppy, and the number of sectors per track in the
DATA part of the floppy. On the 1108, \FLOPPY.CYLINDERS=77,
\FLOPPY.TRACKSPERCYLINDER=2, and

 \FLOPPY.SECTORSPERTRACK=15. Some of these values are
different for the 1186.

\FLOPPYIOCB and 1108 Input Output Control Blocks

\FLOPPYIOCB (Variable)

Points to the 1108 floppy input output control block. Lisp is run by
the CP Central Processor and must communicate via the input
output control block to the IOP Input Output Processor the various
floppy commands that need to be executed.

It will appear that \FLOPPYIOCB is bound to
CURSORBITMAP.EM. This is just a peculiarity of how the Lisp
virtual memory works.

An input output control block looks like

FLOPPYIOCB (Datatype)

2

(DATATYPE FLOPPYIOCB
 ((\BUFFERLOLOC WORD)
 (\BUFFERHILOC WORD)
 (NIL WORD)
 (SECTORLENGTHDIV2 WORD)
 (TROYORIBM BITS 12)
 (DENSITY BITS 4)
 (DISKADDRESS FIXP)
 (SECTORCOUNT WORD)
 (FLOPPYRESULT WORD)
 (SAMEPAGE FLAG)
 (COMMAND BITS 15)
 (SUBCOMMAND WORD)
 (SECTORLENGTHDIV4 BITS 8)
 (ENCODEDSECTORLENGTH BITS 8)
 (SECTORSPERTRACK BITS 8)
 (GAP3 BITS 8)
 (NIL 3 WORD)))

The Lisp code sets up and the IOP reads all fields except for
FLOPPYRESULT. The IOP sets and the Lisp code reads the
FLOPPYRESULT.

\BUFFERHILOC and \BUFFERLOLOC are the high and low part of
the pointer to the page that is being read from or being written to if
any. We are not able to put (BUFFER POINTER) instead of
(\BUFFERLOLOC WORD) and (\BUFFERHILOC WORD) because
\BUFFERHILOC and \BUFFERLOLOC occur in the wrong order.
The reason for this is that Mesa pointers are swapped and Lisp
pointers are not.

SECTORLENGTHDIV2 is the length in bytes of the sectors being
read or written divided by 2.

TROYORIBM is always IBM.

DENSITY is usually DOUBLE. DENSITY is SINGLE for track
CYLINDER=0, HEAD=0 on Pilot floppies.

DISKADDRESS is a FIXP encoding a
CYLINDER+HEAD+SECTOR combination. Each DISKADDRESS
points to a page (aka sector) on the floppy. The particular format of
DISKADDRESSes is described elsewhere in this document.

SECTORCOUNT is looked at by the IOP only when the
COMMAND is to format the floppy. SECTORCOUNT indicates
how many tracks to format.

FLOPPYRESULT is the status result word which is set by the IOP.
The FLOPPYRESULT is a set of flags which can be usefully
inspected with the FLOPPYRESULT BLOCKRECORD described
elsewhere in this document.

SAMEPAGE is always NIL.

COMMAND can be any of the following constants

C.NOP (Constant)
C.READSECTOR (Constant)
C.WRITESECTOR (Constant)
C.FORMATTRACK (Constant)
C.RECALIBRATE (Constant)
C.INITIALIZE (Constant)

SUBCOMMAND is always SC.NOP.

3

GAP3, SECTORLENGTHDIV4, ENCODEDSECTORLENGTH, and
SECTORSPERTRACK are obscure numbers that need to be set up
for the IOP when COMMAND is to format.

1108 Floppy DISKADDRESSes

Locations of pages on a floppy are referrred to by the hardware by
cylinder+head+sector number combinations called
DISKADDRESSes. DISKADDRESSes are represented by FIXPs
and are accessed and created with the help of the record
declaration

DISKADDRESS (Accessfns)

(ACCESSFNS DISKADDRESS
 ((CYLINDER (LRSH DATUM 16))
 (HEAD (LRSH (LOGAND DATUM 65535) 8))
 (SECTOR (LOGAND DATUM 255)))
 (CREATE (IPLUS (LLSH CYLINDER 16)
 (LLSH HEAD 8)
 SECTOR)))

CYLINDER can be between 0 and \FLOPPY.CYLINDERS.

HEAD can be 0 or 1 to indicate which side of the floppy should be
read.

The part of the floppy pointed to by a CYLINDER+HEAD
combination is known as a track. Each track contains a certain
amount of redundant operation for self checking puposes
conducted by the IOP assembly language code plus actual data
stored in pages called sectors.

SECTOR can be between 1 and 15 for tracks that are formatted
IBM double density 512 bytes per sector. The upper limit for
SECTOR is determined according to the formatting of the track as
given by the following table

 Format Number of Sectors
IBMS128 26
IBMS256 15
IBMS512 8
IBMS1024 4
IBMD128 36
IBMD256 26
IBMD512 15
IBMD1024 8

The table above can be found coded into the function
\FLOPPY.SECTORSPERTRACK.

Pilotconverts between Pilot page numbers and DISKADDRESSes
by using the functions \PFLOPPY.PAGENOTODISKADDRESS and
\PFLOPY.DISKADDRESSTOPAGENO.

\FLOPPYRESULT and 1108 Result Words

\FLOPPYRESULT (Variable)

4

Points to the 1108 floppy result word offsetted into the
\FLOPPYIOCB input output control block. Lisp is run by the CP
Central Processor and must communicate via the input output
control block to the IOP Input Output Processor the various floppy
commands that need to be executed. After a command is
executed, the Lsip code looks at the status word to see if any error
conditions were signalled indicating a failed operation.

It will appear that \FLOPPYRESULT is bound to MOUSEX.EM.This
is just a peculiarity of how the Lisp virtual memory works.

An 1108 result word looks like

FLOPPYRESULT (Blockrecord)

(BLOCKRECORD FLOPPYRESULT
 ((DOOROPENED FLAG)
 (MPERROR FLAG)
 (TWOSIDED FLAG)
 (DISKID FLAG)
 (ERROR FLAG)
 (NIL FLAG)
 (RECALIBRATEERROR FLAG)
 (DATALOST FLAG)
 (NOTREADY FLAG)
 (WRITEPROTECT FLAG)
 (DELETEDDATA FLAG)
 (RECORDNOTFOUND FLAG)
 (CRCERROR FLAG)
 (TRACK0 FLAG)
 (NIL FLAG)
 (BUSY FLAG)))

It should be pointed out that some of the error bits in the
\FLOPPYRESULT are a bit noisy. Certain errors turn out to be
transients that can be overcome simply by reissuing the last
command. The bits MPERROR and CRCERROR are notably
noisy. The Lisp code takes the first occurence of certain errors as
an indication that perhaps the floppy drive has lost its way and
needs to be recalibrated. In that case, a recalibrate command is
issued and then the command that failed is tried again. After
sufficient retrying of a command that fails (the amount of retrying
depending on the kind of command and the particular settings of
the error bits), the bad news is announced to the user. Most of this
retrying and so on has been determined empirically and is coded
into the function \FLOPPY.RUN.

DOOROPENED is T if the floppy drive door has opened since the
last floppy command. This is an error condition which has to be
cleared. (When DOOREOPENED gets set, ERROR also gets set.)
To clear this bit, an INITIALIZE command must be issued.

MPERROR is T if the IOP floppy handler tried to crash the
machine. We suspect this condition gets set from time to time
because of bugs in the IOP assembly language code written by
OSD. The MPERROR feature is a patch on top of the OSD
assembly language code installed by Mitch Lichtenberg. Instead
of crashing the machine the flag MPERROR now gets set and Lisp
deals with that. It has turned out to be the case that reissuing the
last command to the IOP without change invariably works. When
MPERROR is set to T, the remainder of the FLOPPYRESULT word
is treated as an error code instead of the flags DOOROPENED,
TWOSIDED,DISKID, ... BUSY. The MPCODEs stored in the
remainder of the FLOPPYRESULT word can be

580 Domino NoValidCommand Error
581 Domino UnImplFloppyCmd Error
582 Domino InvalidEscapeCmd Error

5

583 Domino CommandTrack Error
584 Domino TrackToBig Error
585 Domino BadDmaChannel Error
586 Domino NoDmaEndCount1 Error
587 Domino NoDmaEndCount2 Error
597 Domino Error In NOOP Patch
598 Domino Error in Reset Patch

TWOSIDED is T if the floppy is two sided.

DISKID = T if the floppy drive is Schogart Associated model SA850
and NIL if the floppy drive is Schogart Associated model SA800.

ERROR = T if there was an error in trying to perofrm the last
command issued to the IOP. To clear this bit, an INITIALIZE
command must be issued.

RECALIBRATEERROR = T if there was an error while recalibrating I
suppose. I don’t think I’ve ever seen this flag set in practice except
perhaps if you issue a recalibrate command when there is no floppy
in the floppy drive. The Lisp code in that situation would tend to
error out on a command preceding any recalibration.

DATALOST = T problem reading or writing. Maybe the track of the
floppy which is being read from or written into isn’t formatted in the
way that was expected.

NOTREADY = T implies the IOP is not ready I guess. I’m not sure
I’ve ever seen this.

WRITEPROTECT = T means the floppy is writeprotected. Any
attempt to write on the floppy will fail so the Lisp code checks
whether this flag is on and signals an error if need be before
attempting to open an ouptut stream or format a floppy.

DELETEDDATA = I have no idea.

RECORDNOTFOUND = T problem reading or writing. Maybe the
track of the floppy which is being read from or written into isn’t
formatted in the way that was expected.

CRCERROR = Cyclic Redundancy Check. There is redundant
information on the floppy which serves as a check to the IOP
assembly language code that the floppy drive head is where it is
supposed to be. This error bit is a bit noisy and spurious
CRCERRORs can be overcome by reissuing the last command to
the IOP. If after several retries the CRCERROR has not gone
away, then the CRCERROR is treated as real and the user is hit
with the bad news. A hard CRCERROR is caused by the track of
the floppy which is being read from or written into not being
formatted in the way that was expected.

TRACK0 = T after a recalibrate command. Says that the
recalibrate successfully found CYLINDER=0 I guess. Not really
paid attention to by the Lisp code.

BUSY = T implies the IOP is busy I guess. I’m not sure if this would
mean that the IOP is still preocessing the most recently issued
command or not. The official way to wait for the IOP to finish the
most recently issued command is with the loop

(while (NOT (ZEROP (fetch (IOPAGE DLFLOPPYCMD) of
\IOPAGE))) do (BLOCK))

6

Low Level 1108 Floppy Command Functions

(\FLOPPY.RUN FLOPPYIOCB NOERROR)

This function makes the IOP really go.

FLOPPYIOCB should already be prepared by other functions like
\FLOPPY.NOP, \FLOPPY.READSECTOR,

 \FLOPPY.WRITESECTOR, \FLOPPY.FORMATTRACKS,
 \FLOPPY.RECALIBRATE, or \FLOPPY.INITIALIZE described

below.

First, if there is a buffer involved (the command is to read or to
write), the buffer is locked down by calling the function
\FLOPPY.LOCK.BUFFER.

Next, the FLOPPYIOCB passed in is \BLTed on to \FLOPPYIOCB.
\FLOPPYIOCB points to the beginning of the 16 words in real
memory that the IOP will look at and interpret as an input output
control block to be processed.

Next, the IOP is notified that there is an input output control block in
need of processing via

(replace (IOPAGE DLFLOPPYCMD) of \IOPAGE with
\FLOPPYIOCBADDR)

The IOP periodically looks at the \IOPAGE for things to do and acts
when it sees a nonzero DLFLOPPYCMD field in the \IOPAGE.
After replacing the DLFLOPPYCMD field in the \IOPAGE, the Lisp
code must wait until the IOP finishes via the loop

(while (NOT (ZEROP (fetch (IOPAGE DLFLOPPYCMD) of
\IOPAGE))) do (BLOCK))

After this loop finishes, \FLOPPY.RUN looks at the
\FLOPPYRESULT result word to see if any error flags have been
set by the IOP. Supposing things have gone well,
\FLOPPY.UNLOCK.BUFFER is called to unlock the buffer (if any)
pointed to by the FLOPPYIOCB and \FLOPPY.RUN returns T
indicating success.

If error bits in the \FLOPPYRESULT result word have been set,
then \FLOPPY.RUN may try to recover in certain ways. This may
involve reissuing a command and/or some intervening recalibration
commands.

If an error persists, then \FLOPPY.RUN returns NIL if NOERROR =
T and otherwise a break and an error message happen to the user.

(\FLOPPY.LOCK.BUFFER FLOPPYIOCB)

Calls \LOCKPAGES on the buffer pointed to by the FLOPPYIOCB
\BUFFERLOLOC and \BUFFERHILOC fields. It is necessary that
the buffer be locked down before a command can be issued to the
IOP. This function also does \GETBASEing and \PUTBASEing into
the BUFFER to make the BUFFER look dirty to the IOP. This is
known as "touching pages". A reasonable person would think that
this touching ought not to be forced on the Lisp floppy handler, but
that’s just the way it is. If the Lisp floppy handler doesn’t touch the
buffer, the IOP will sometimes cause a fatal 510 crash.

7

\FLOPPY.LOCK.BUFFER gets called by \FLOPPY.RUN before a
command to the IOP is allowed to begin exectuing.

(\FLOPPY.UNLOCK.BUFFER FLOPPYIOCB)

Calls \UNLOCKPAGES on the buffer pointed to by the
FLOPPYIOCB. \FLOPPY.UNLOCK.BUFFER gets called by
\FLOPPY.RUN after a command to the IOP has finished executing.

(\FLOPPY.NOP NOERROR)

Calls \FLOPPY.RUN to perform a NOP command. This command
can be used to get the state of the DOOROPENED and
WRITEPROTECT flags of the \FLOPPYRESULT without doing
actual operations.

(\FLOPPY.READSECTOR FLOPPYIOCB DISKADDRESS PAGE
NOERROR)

Calls \FLOPPY.RUN to perform a read. PAGE should be a virtual
memor page VMEMPAGEP. Typically PAGE is a virtual memory
page that has worked its way down from FILEIO functions to
\FLOPPY.READSECTOR via the functions

 \PFLOPPY.READPAGES and \PFLOPPY.READPAGENO.
 FLOPPYIOCB will normally be \FLOPPY.IBMD512.FLOPPYIOCB.

Data at the page of the floppy located at DISKADDRESS is read
into PAGE.

(\FLOPPY.WRITESECTOR FLOPPYIOCB DISKADDRESS
PAGE NOERROR)

Calls \FLOPPY.RUN to perform a write. PAGE should be a virtual
memor page VMEMPAGEP. Typically PAGE is a virtual memory
page that has worked its way down from FILEIO functions to
\FLOPPY.WRITESECTOR via the functions

 \PFLOPPY.WRITEPAGES and \PFLOPPY.WRITEPAGENO.
FLOPPYIOCB will normally be \FLOPPY.IBMD512.FLOPPYIOCB.
The contents of PAGE are written into the page of the floppy
located at DISKADDRESS.

(\FLOPPY.FORMATTRACKS FLOPPYIOCB DISKADDRESS
KOUNT NOERROR)

Calls \FLOPPY.RUN to perform formatting. This function will
format KOUNT tracks on the

(fetch (DISKADDRESS HEAD) of DISKADDRESS)

side of the floppy beginning with cylinder

(fetch (DISKADDRESS CYLINDER) of DISKADDRESS)

The quantity (fetch (DISKADDRESS SECTOR) of DISKADDRESS)
is ignored for purposes of formatting.

KOUNT is spelled with a K just because COUNT is a CLISP word
and CLISP gets in your way if you spell the word with a C.

The kind of formatting that takes place depends on the kind of
FLOPPYIOCB. If FLOPPYIOCB is

 \FLOPPY.IBMD512.FLOPPYIOCB, then tracks are formatted IBM
double density 512 bytes per sector. If FLOPPYIOCB is
\FLOPPY.IBMD256.FLOPPYIOCB, then tracks are formatted IBM

8

double density 256 bytes per sector.If FLOPPYIOCB is
\FLOPPY.IBMS128.FLOPPYIOCB, then tracks are formatted IBM
single density 128 bytes per sector.

Pilot floppies are formatted this way:

CYLINDER=0, HEAD=0 => IBMS128 format

CYLINDER=0, HEAD=1 => IBMD256 format

CYLINDER >0, HEAD=0 or 1 => IBMD512 format

(\FLOPPY.RECALIBRATE NOERROR)

This function is called to ask the floppy drive hardware to
recalibrate itself. The floppy drive head positions itself over tracks
on a floppy with the aid of a stepping motor which steps in from
CYLINDER=0 which is specially recognizable. The stepping motor
can slip some and it is occasionally necessary to ask the floppy
drive hardware to recalibrate itself which means refind
CYLINDER=0. CYLINDER = 0 is kind of a light pole on a very dark
street for the floppy hardware. Once the hardware is back in the
light of CYLINDER = 0, it knows where it is again.

\FLOPPY.RECALIBRATE is sometimes called by the Lisp
implementation after certain errors are detected while performing
normal commands like reading and writing. The assumption in
those situations is that the stepping motor has slipped some and
that recalibrating will make things well enough again that the
command which failed will succeed if it is reissued after the
recalibration. (Of course, after enough times of trying this strategy,
the error just has to be announced to the user.)

\FLOPPY.RECALIBRATE is also called at the beginning of certain
major operations. For example, \FLOPPY.RECALIBRATE is called
several times by the formatting function \PFLOPPY.FORMAT.
After all, if we’re going to format a floppy which involves writing on
to the floppy, we want to do the best job we can.

(\FLOPPY.INITIALIZE NOERROR)

\FLOPPY.INITIALIZE initializes the IOP assembly language code
floppy handler which Lisp must talk with. This function has to be
the first function that is called when FLOPPY is started up. Thus,
\FLOPPY.EVENTFN calls \FLOPPY.INITIALIZE after coming back
from a LOGOUT, SYSOUT, MAKESYS, or SAVEVM.

\FLOPPY.INITIALIZE also has to be called to clear error conditions
as they arise. This might happen, for example, if the user trys to
read from the floppy drive but the floppy drive door is open or there
is no floppy. This would set the DOOROPENED error bit in the
\FLOPPYRESULT word. To clear these error conditions like
DOOROPENED, \FLOPPY.INITIALIZE needs to be called.

PILOT FLOPPY

This section describes the connection between FLOPPY and
FILEIO. FILEIO is the system source file that makes device

9

independent part of operations like OPENSTREAM, READ, PRINT,
CLOSEF, RENAMEFILE, DELFILE, and DIRECTORY possible.
FILEIO ultimately winds up calling functions stored in the fields of
file device records.

\PFLOPPYFDEV

\PFLOPPYFDEV (Variable)

The major FDEV record for floppy is bound to \PFLOPPYFDEV. At
the time of this writing, \PFLOPPYFDEV looks like the following
image

{FDEV}#66,3400 Inspector

DEVICENAME FLOPPY
RESETABLE T
RANDOMACCESSP T
NODIRECTORIES T
PAGEMAPPED T
FDBINABLE T
FDBOUTABLE T
FDEXTENDABLE T
BUFFERED T
REMOTEP NIL
SUBDIRECTORIES NIL
CLOSEFILE \PFLOPPY.CLOSEFILE
DELETEFILE \PFLOPPY.DELETEFILE
DIRECTORYNAMEP TRUE
EVENTFN \FLOPPY.EVENTFN
GENERATEFILES \PFLOPPY.GENERATEFILES

GETFILEINFO \PFLOPPY.GETFILEINFO
GETFILENAME \PFLOPPY.GETFILENAME
HOSTNAMEP \FLOPPY.HOSTNAMEP
OPENFILE \PFLOPPY.OPENFILE
READPAGES \PFLOPPY.READPAGES
REOPENFILE \PFLOPPY.OPENFILE
SETFILEINFO \PFLOPPY.SETFILEINFO
TRUNCATEFILE \PFLOPPY.TRUNCATEFILE
WRITEPAGES \PFLOPPY.WRITEPAGES
BIN \BUFFERED.BIN
BOUT \BUFFERED.BOUT
PEEKBIN \BUFFERED.PEEKBIN
READP \PAGEDREADP
BACKFILEPTR \PAGEDBACKFILEPTR
DEVICEINFO {PINFO}#65,4764
FORCEOUTPUT \PAGED.FORCEOUTPUT
LASTC NIL
SETFILEPTR \PAGEDSETFILEPTR
GETFILEPTR \PAGEDGETFILEPTR
GETEOFPTR \PAGEDGETEOFPTR
EOFP \PAGEDEOFP
BLOCKIN \BUFFERED.BINS
BLOCKOUT \BUFFERED.BOUTS
RENAMEFILE \PFLOPPY.RENAMEFILE
RELEASEBUFFER NIL
GETNEXTBUFFER \PAGED.GETNEXTBUFFER
SETEOFPTR \PAGED.SETEOFPTR
FREEPAGECOUNT NIL
MAKEDIRECTORY NIL
WINDOWOPS NIL
WINDOWDATA NIL

10

CHECKFILENAME NIL
HOSTALIVEP NIL
OPENP \GENERIC.OPENP
OPENFILELST NIL
REGISTERFILE \ADD-OPEN-STREAM

Pilot Floppy FDEV Functions

The following FLOPPY functions can be called by FILEIO

(\PFLOPPY.OPENFILE FILE ACCESS RECOG OTHERINFO
FDEV OLDSTREAM)

Gets called when FILEIO opens a stream for input or output. If
input, then \PFLOPPY.OPENOLDFILE eventually gets called. If
output, then \PFLOPPY.OPENNEWFILE eventually gets called.

\PFLOPPY.OPENFILE returns a stream datatype. The DEVICE of
the stream will be \PFLOPPYFDEV. Two other fields on the
stream, F1 and F2, point to the allocation record (PFALLOC) and
leader page (PLPAGE) for the stream. The PFALLOC and
PLPAGE can be conveniently accessed by using the
FLOPPYSTREAM ACCESSFNS. When other floppy functions are
passed the stream to work with, FLOPPY looks at the arguments
passed, the fields of the stream, and the fields of the PFALLOC and
PLPAGE to determine how to act.

\PFLOPPY.DIR.GET is called to search for the allocation record of
an old FILE. \PFLOPPY.DIR.PUT is called to store the allocation
record of a newly created file.

(\PFLOPPY.READPAGES STREAM FIRSTPAGE# BUFFERS)

Reads sectors off floppy into virtual memory pages BUFFERS.
FIRSTPAGE# is in FILEIO’s scheme of counting the pages of a file,
beginning with 0 for the first page of a file.
\PFLOPPY.READPAGES therefore fills BUFFERS with data read
from the floppy beginning with the FIRSTPAGE# of STREAM.

FIRSTPAGE# is in FILEIO’s scheme of counting the pages of a file.
FILEIO page numbers are converted into Pilot page numbers lieing
somewhere between \PFLOPPYFIRSTDATAPAGE and
\PFLOPPYLASTDATAPAGE. Pilot page numbers are in turn
converted into DISKADDRESSes which record head, sector, and
cylinder of a page on a floppy.

\PFLOPPY.READPAGES calls \FLOPPY.READPAGE which
computes a Pilot page number from the stream’s PFALLOC and
the FILEIO page number passed in as an argument.

\FLOPPY.READPAGE calls
 \PFLOPPY.PAGENOTODISKADDRESS to convert the Pilot page

number into a DISKADDRESS and then calls
\FLOPPY.READSECTOR to read the sector at the computed disk
address.

(\PFLOPPY.WRITEPAGES STREAM FIRSTPAGE# BUFFERS)

Other than that writing is taking place instead of reading,
\PFLOPPY.WRITEPAGES is similar to \PFLOPPY.READPAGES.

11

Writes contents of virtual memory pages BUFFERS on to sectors of
floppyfills BUFFERS with data . FIRSTPAGE# is in FILEIO’s
scheme of counting the pages of a file, beginning with 0 for the first
page of a file. \PFLOPPY.WRITEPAGES therefore writes to the
floppy beginning with the location corresponding to the
FIRSTPAGE# of STREAM.

FIRSTPAGE# is in FILEIO’s scheme of counting the pages of a file.
FILEIO page numbers are converted into Pilot page numbers lieing
somewhere between \PFLOPPYFIRSTDATAPAGE and
\PFLOPPYLASTDATAPAGE. Pilot page numbers are in turn
converted into DISKADDRESSes which record head, sector, and
cylinder of a page on a floppy.

\PFLOPPY.WRITEPAGES calls \FLOPPY.WRITEPAGE which
computes a Pilot page number from the stream’s PFALLOC and
the FILEIO page number passed in as an argument.

\FLOPPY.WRITEPAGE calls
 \PFLOPPY.PAGENOTODISKADDRESS to convert the Pilot page

number into a DISKADDRESS and then calls
\FLOPPY.WRITESECTOR to write the sector at the computed disk
address.

(\PFLOPPY.TRUNCATEFILE FILE LASTPAGE LASTOFFSET)

Called just before closing an output file. The effect as far as
FLOPPY is concerned is to take the allocation record (PFALLOC)
for FILE and split the allocation record into two records if
necessary. The first PFALLOC created this way is just big enough
to store the truncated file. The second PFALLOC created this way
becomes a free block. Since FLOPPY does not know how big an
output file will turn out to be when it is first opened, FLOPPY must
go through the process of allocating a reasonable size block,
growing the block on occasion when \PFLOPPY.WRITEPAGES is
about to cause the block to overflow, and finally truncate--i.e. split--
the block into actual file and free block when
\PFLOPPY.TRUNCATEFILE gets called.

\PFLOPPY.TRUNCATEFILE calls \PFLOPPY.TRUNCATE which
does the actual splitting of a PFALLOC . \PFLOPPY.TRUNCATE
splits a PFALLOC into two PFALLOCs equal to file and free block.
The list of PFALLOCS cached on the floppy file device is updated
and sufficiently many \PFLOPPY.WRITEPAGENOs of new or
updated Pilot marker pages are written out to the floppy.

(\PFLOPPY.CLOSEFILE FILE)

Called to close a file. Writes out the leader page (PLPAGE) of FILE
and the two marker pages that go around the leader page+ file.

(\PFLOPPY.DELETEFILE FILE FDEV)

Called to delete a file. \PFLOPPY.DIR.GET gets called to search
for the allocation record for FILE. \PFLOPPY.DIR.REMOVE gets
called to remove the allocation record from the cached directory
alist. \PFLOPPY.DEALLOCATE gets called to turn the removed
PFALLOC into a free block. The two marker pages surrounding
FILE are updated to indicate that there is a free block between the
marker pages and then they are written out. (Otherwise, at least
until the free block gets used for other purposes, the contents of the
file are still there, but have become inaccessible.)

12

(\PFLOPPY.RENAMEFILE OLDDEVICE OLDFILE NEWDEVICE
NEWFILE OLDRECOG NEWRECOG)

Called to rename a file. \PFLOPPY.DIR.GET gets called to search
for the allocation record for FILE. The PFALLOC found in the
directory alist is removed with \PFLOPPY.DIR.REMOVE and then
reentered with \PFLOPPY.DIR.PUT under the new file name which
\PFLOPPY.RENAMEFILE computes. Finally, the leader page for
the PFALLOC is changed to have the new file name and then is
written out to the floppy.

(\PFLOPPY.GETFILEINFO FILE ATTRIBUTE FDEV)

Called by GETFILEINFO. All file attributes like WRITEDATE,
CREATIONDATE, LENGTH, and TYPE are stored on the leader
page of a file. \PFLOPPY.GETFILEINFO returns values,
sometimes suitably converted, out of the leader page.

(\PFLOPPY.SETFILEINFO FILE ATTRIBUTE VALUE)

Called by SETFILEINFO. All file attributes like WRITEDATE,
CREATIONDATE, LENGTH, and TYPE are stored on the leader
page of a file. The VALUE for ATTRIBUTE, sometimes suitably
converted, is stored into the leader page. The updated leader page
is then written out to the floppy if FILE is not open. (If FILE is open
then the leader page will be written out to the floppy when FILE is
closed.)

(\PFLOPPY.GETFILENAME FILE RECOG FDEV)

Called by FINDFILE and INFILEP. This function can get called if
{FLOPPY} (or a directory name like {FLOPPY}<MYDIR>) is on the
user’s DIRECTORIES search path. When a function like
OPENSTREAM fails to find a file on the user’s connected directory,
\PFLOPPY.GETFILENAME may get asked about FILE to see if
FILE is on {FLOPPY}.

\PFLOPPY.GETFILENAME is coded very similar to
\PFLOPPY.DIR.GET which searches the floppy directory alist
stored in (fetch (PFLOPPYFDEV DIR) of \FLOPPYFDEV).

\PFLOPPY.GETFILENAME returns NIL if no file is found. NIL is
also returned if there is no floppy in the floppy drive or if there is no
floppy drive on the machine that the user is using.

(\PFLOPPY.GENERATEFILES FDEV PATTERN
 DESIREDPROPS OPTIONS)

Called by DIRECTORY and the DIR LISPXMACRO. Like all
corresponding GENERATEFILES functions installed on other file
devices, \PFLOPPY.GENERATEFILES returns a file generator
FILEGENOBJ which is a record that contains a GENFILESTATE
plus two function names--in FLOPPY’s case,
\PFLOPPY.NEXTFILEFN and \PFLOPPY.FILEINFOFN.

The GENFILESTATE is a record that amounts to a stack of all the
desired FLOPPY files according to the PATTERN,
DESIREDPROPS, and OPTIONS that have been supplied. The
files that go into the GENFILESTATE are collected by walking
along the floppy directory alist which is stored on (fetch
(PFLOPPYFDEV DIR) of \FLOPPYFDEV). A lot of the work is
done by calling the function DIRECTORY.MATCH.

13

\PFLOPPY.NEXTFILEFN takes a GENFILESTATE, pops a file
name out of the GENFILESTATE which also side effects the
GENFILESTATE, and then returns the file name. If the
GENFILESTATE has gone empty, then \PFLOPPY.NEXTFILEFN
just returns NIL.

\PFLOPPY.FILEINFOFN is asked to supply information about the
file that is at the top of the GENFILESTATE stack. This is done
quite easily by calling the same function
(\PFLOPPY.GETFILEINFO1) that \PFLOPPY.GETFILEINFO calls.

(\FLOPPY.HOSTNAMEP NAME FDEV)

This kind of function is intended for file devices that have
nicknames. The HOSTNAMEP functions get called when the user
specifies a file name containing a nickname as the host part of the
file name. Since {FLOPPY} doesn’t have any nicknames,
\FLOPPY.HOSTNAMEP returns T iff NAME is FLOPPY.

(\FLOPPY.EVENTFN FDEV EVENT)

This function gets called before and after any LOGOUT, SYSOUT,
MAKESYS, or SAVEVM.

Pilot Page Numbers

The hardware refers to locations of pages on a floppy by cylinder,
head, and sector numbers. This way of enumerating pages on a
floppy is cumbersome and the OSD Pilot design makes the
somewhat sensible choice of making up its own numbering system
for the pages on a floppy. We refer to these numbers as pilot page
numbers.

\PFLOPPYFIRSTDATAPAGE (Variable)

\PFLOPPYLASTDATAPAGE (Variable)

Each cylinder+head+sector combination can be encoded as a
single FIXP called a DISKADDRESS. The functions to convert
between Pilot page numbers and DISKADDRESSes are

(\PFLOPPY.PAGENOTODISKADDRESS PAGENO)

(\PFLOPPY.DISKADDRESSTOPAGENO DISKADDRESS)

The functions to read and write pages to particular pilot page
numbers are

(\PFLOPPY.READPAGENO PAGENO PAGE NOERROR)

(\PFLOPPY.WRITEPAGENO PAGENO PAGE NOERROR)

Pilot Marker Pages

Marker pages delimit the files and free blocks found on a Pilot
floppy. The pattern of the data stored on a floppy is

DATA = MP ALLOC MP ALLOC MP ALLOC MP ... MP ALLOC MP

14

Generally a ALLOC is a free block or a leader page + file
combination. One ALLOC is the filelist.

The declaration for Pilot floppy marker pages is

PMPAGE (Datatype)

(DATATYPE PMPAGE
 ((SEAL WORD)
 (VERSION WORD)
 (* Previous marker page entry *)
 (PLENGTH SWAPPEDFIXP)
 (PTYPE WORD)
 (PFILEID SWAPPEDFIXP)
 (PFILETYPE WORD)
 (NIL 121 WORD)
 (* Next marker page entry *)
 (NLENGTH SWAPPEDFIXP)
 (NTYPE WORD)
 (NFILEID SWAPPEDFIXP)
 (NFILETYPE WORD)
 (NIL 121 WORD)))

SEAL.PMPAGE (Constant)

VERSION.PMPAGE (Constant)

The SEAL and VERSION fields of a PMPAGE are the same for all
marker pages. The magic constants are SEAL.PMPAGE and
VERSION.PMPAGE. The SEAL.PMPAGE magic constant is
arbitrary enough that there is only a slight chance that a non marker
page would begin with this particular word. Hence, the scavenger
can search for marker pages by looking for pages that begin with
SEAL.PMPAGE.

The fields PLENGTH, PTYPE, PFILEID, PFILETYPE describe the
ALLOC preceding the marker page. The fields NLENGTH, NTYPE,
NFILEID, NFILETYPE describe the ALLOC following the marker
page.

PLENGTH, NLENGTH = Length of ALLOC in pages.

PTYPE, NTYPE = Free, file, or filelist.

PFILEID, NFILEID = Pretty worthless. Used by Mesa. Each
ALLOC has its own fileid number in the Mesa floppy handler. Not
used by the Xerox Lisp software.

PFILETYPE, NFILETYPE =Free, file, or filelist. At first glance you
might think that there isn’t much point in having both PTYPE,
NTYPE and PFILETYPE, NFILETYPE. If you think that, you are
right. Please remember before you throw the rotten oranges that
this is not my design. Blame it on OSD.

Pilot Leader Pages

The pattern of the data stored on a floppy is

DATA = MP ALLOC MP ALLOC MP ALLOC MP ... MP ALLOC MP

15

Generally an ALLOC is a free block or a leader page + file
combination. One ALLOC is the filelist. Thus the possible patterns
for an ALLOC look like

ALLOC = FREE
ALLOC = LP FILE
ALLOC = FILELIST

We note that all leader pages that occur on a Pilot floppy are
immediately preceded by a marker page. All files on a Pilot floppy
are preceded by a leader page. Each leader page + file
combination is surrounded by two marker pages.

An exception to the rule: Microcode files on boot floppies do not
have leader pages. They look like ALLOC = FILE. You may
wonder why a microcode file’s ALLOC shouldn’t also be ALLOC =
LP FILE. There isn’t any reason for the exception. This is just
another feature of the OSD design.

The declaration for Pilot floppy leader pages is

PLPAGE (Datatype)

(DATATYPE PLPAGE
 ((SEAL WORD)
 (VERSION WORD)
 (MESATYPE WORD)
 (* Offset 6 *)
 (\CREATIONDATE SWAPPEDFIXP)
 (\WRITEDATE SWAPPEDFIXP)
 (PAGELENGTH SWAPPEDFIXP)
 (HUGEPAGESTART SWAPPEDFIXP)
 (HUGEPAGELENGTH SWAPPEDFIXP)
 (HUGELENGTH SWAPPEDFIXP)
 (\NAMELENGTH WORD)
 (NAMEMAXLENGTH WORD)
 (* Offset 17 *)
 (\NAME 50 WORD)
 (* Offset 67 *)
 (UFO1 WORD)
 (UFO2 WORD)
 (DATAVERSION WORD)
 (\TYPE WORD)
 (NIL 183 WORD)
 (\BYTESIZE WORD))

The SEAL and VERSION fields of a PLPAGE are the same for all
marker pages. The magic constants are SEAL.PLPAGE and
VERSION.PLPAGE. The SEAL.PLPAGE magic constant is
arbitrary enough that there is only a slight chance that a non marker
page would begin with this particular word. Hence, the scavenger
can search for marker pages by looking for pages that begin with
SEAL.PLPAGE.

MESATYPE is fairly obscure. I think it marks the file according to
what kind of application produced the file. Each application can
register itself with OSD who doles out the numbers.

\CREATIONDATE is the obvious. However, the numeric encryption
is according to Mesa’s standards.

\WRITEDATE is the obvious. However, the numeric encryption is
according to Mesa’s standards.

16

PAGELENGTH is the length of the file after the leader page in
pages.

HUGEPAGESTART, HUGEPAGELENGTH, HUGELENGTH are
pretty arcane. For ordinairy files, HUGEPAGESTART = 0 and
HUGEPAGELENGTH = PAGELENGTH. For all files,
HUGELENGTH = the length of the file in bytes. For sysout and
huge pilot files, it is possible that HUGEPAGESTART > 0 and
HUGEPAGELENGTH < PAGELENGTH. Or some funny business
like this.

\NAMELENGTH, NAMEMAXLENGTH, \NAME indicate the name of
the file following the leader page. Oddly enough,
NAMEMAXLENGTH is just a constant field for all leader pages.

UFO1, UFO2. Flying saucers. Treated as constant fields by Lisp.

DATAVERSION. Another constant field.

\TYPE = binary or text.

Pilot Sector 9

The name of the floppy is stored on the page at location
CYLINDER = 0, HEAD = 0, SECTOR = 9. All of CYLINDER = 0 is
wasted except for sector 9 . There is nothing valuable stored on
the 8 sectors before sector 9, or any of the sectors on CYLINDER =
0.

All the tracks from CYLINDER=1 to \FLOPPY.CYLINDERS are
formatted IBM double density 512 bytes per sector. Strangely, the
two sides of CYLINDER = 0 are formatted differently. As part of the
OSD design, CYLINDER = 0, HEAD = 0 is formatted IBM single
density 128 bytes per sector and CYLINDER = 0, HEAD = 1 is
formatted IBM double density 256 bytes per sector.

The pattern of the data stored in sector 9 is conveniently
represented by a datatype called PSECTOR9.

PSECTOR9 (Datatype)

(DATATYPE PSECTOR9
 ((SEAL WORD)
 (VERSION WORD)
 (CYLINDERS WORD)
 (TRACKSPERCYLINDER WORD)
 (SECTORSPERTRACK WORD)
 (PFILELISTSTART WORD)
 (PFILELISTFILEID SWAPPEDFIXP)
 (PFILELISTLENGTH WORD)
 (ROOTFILEID SWAPPEDFIXP)
 (NIL WORD)
 (PILOTMICROCODE WORD)
 (DIAGNOSTICMICROCODE WORD)
 (GERM WORD)
 (PILOTBOOTFILE WORD)
 (FIRSTALTERNATESECTOR WORD)
 (COUNTBADSECTORS WORD)
 (NEXTUNUSEDFILEID SWAPPEDFIXP)
 (CHANGING FLAG)

17

 (NIL BITS 15)
 (\LABELLENGTH WORD)
 (\LABEL 106 WORD)))

Lisp verifies that the SEAL of the PSECTOR9 that it reads in is
equal to magic constant SEAL.PSECTOR9. This action serves to
check that the floppy that is being read is in fact a Pilot floppy.

A floppy’s name is stored in \LABELLENGTH and \LABEL. The
floppy name is accessed by the user through the function
FLOPPY.NAME.

Everything else about PSECTOR9 is not useful to Lisp and is not
used by any of the Lisp code. However Mesa does use some of
this cruft and Lisp has to keep the cruft consistent with what Mesa
would like to see.

Occasionally, the filelist (also useless) moves around on the floppy.
When this happens, PFILELISTSTART, PFILELISTFILEID,
PFILELISTLENGTH also have to be updated.

NEXTUNUSEDFILEID has to do with the Mesa floppy handler’s
notion of what a fileid is. This notion is irrelevant to the Lisp
implementation of FLOPPY, but the Lisp implementation of
FLOPPY does have to keep NEXTUNUSEDFILEID equal to one
plus the number of files currently stored on the floppy.

Every time a new file is created and closed, NEXTUNUSEDFILEID
has to be increased by one, the filelist has to change, and both the
PSECTOR9 and the filelist have to be written out to the floppy.

(\PFLOPPY.SAVE.PSECTOR9 NOERROR)

Saves the cached PSECTOR9 out to the floppy.

Pilot Filelist

The Pilot filelist is not used by the Lisp FLOPPY but must be
maintained by the Lisp FLOPPY code to be compatible with the
Mesa floppy handler. The filelist has the form

FILELIST = SEAL VERSION NENTRIES MAXENTRIES ENTRY
 ENTRY ENTRY ... ENTRY

Every time a new file is created and closed, an ENTRY has to be
added to FILELIST and FILELIST has to be written out. Every time
a file is deleted, an ENTRY has to be deleted from FILELIST and
FILELIST has to be written out. Other than to maintain the
FILELIST in this way for Mesa’s benefit, Lisp does not use the
FILELIST. Lisp uses the marker pages on a floppy to find where
the files are and could care less about the filelist.

The filelist and filelist entry record declarations are

(BLOCKRECORD PFILELIST
 ((SEAL WORD)
 (VERSION WORD)
 (NENTRIES WORD)
 (MAXENTRIES WORD)))

18

(DATATYPE PFLE
 ((FILEID SWAPPEDFIXP)
 (TYPE WORD)
 (START WORD)
 (LENGTH WORD)))

(\PFLOPPY.ADD.TO.PFILELIST PFALLOC)

Create a PFLE file list entry on the filelist for this PFALLOC.

(\PFLOPPY.DELETE.FROM.PFILELIST PFALLOC)

Deletes the PFLE file list entry on the filelist corresponding to this
PFALLOC.

(\PFLOPPY.SAVE.PFILELIST NOERROR)

Saves the filelist out to the floppy.

Pilot Floppy Format

The overall architecture of a Pilot floppy looks like this

FLOPPY = CYLINDER0 DATA

CYLINDER0 = CYLINDER0HEAD0 CYLINDER0HEAD1

CYLINDER0HEAD0 = GARBAGE SECTOR9 GARBAGE

CYLINDER0HEAD1 = GARBAGE

DATA = DATA = MP ALLOC MP ALLOC MP ... MP ALLOC MP

ALLOC = FREE
ALLOC = LP FILE
ALLOC = FILELIST

Exactly one ALLOC is the FILELIST. SECTOR9 and the FILELIST
are for the most part useless. However, the Lisp implementation
has to maintain SECTOR9 and FILELIST in a way that will make
the Mesa floppy handler happy.

The Lisp implementation finds out what files are present on a floppy
by following the marker pages (MPs) in the DATA which always
begins at \PFLOPPYFIRSTDATAPAGE andends at
\PFLOPPYLASTDATAPAGE. There are fields on the marker
pages telling how long and what kind of ALLOC appears on either
side of the marker page.

The formatting function for Pilot floppies is

(\PFLOPPY.FORMAT NAME AUTOCONFIRMFLG SLOWFLG)

\PFLOPPY.FORMAT formats the tracks of the floppy according to
the peculiar OSD design and then makes the floppy look like it is a
Pilot floppy with an empty directory. The DATA on a freshly
formatted floppy has the form

DATA = MP FILELIST MP FREE MP

19

Cached Pilot Floppy Information

Duplicate directory information about a floppy is cached in core.
This is held on to by a PFINFO datatype.

PFINFO (Datatype)

(DATATYPE PFINFO (OPEN PFILELIST PFALLOCS DIR
PSECTOR9))

We may describe the fields of the PFINFO slightly out of order.

OPEN is a flag saying whether directory information for the current
floppy has been cached or not in th remaining fields of the PFINFO.

PFILELIST is the Pilot filelist. The filelist is unimportant except that
it must be maintained for Mesa’s benefit. An updated PFILELIST
has to be written out each time a file is written etc.

PSECTOR9 is the Pilot sector 9 record. This is where the floppy
name lives. Otherwise, this record is also pretty worthless as far as
Lisp is concerned. But there are fields on the PSECTOR9 that
have to be maintained for Mesa’s benefit. An updated PFILELIST
has to be written out each time a file is written etc.

DIR is the cached flopy directory alist which is an alist of alists of
alists.

PFALLOCS is a list of PFALLOC records which describe
successive allocations on the floppy.

Cached Pilot Floppy DIR Alist

The PFINFO DIR is the cached flopy directory alist which is an alist
of alists of alists. It has the form

((name (extension (version . PFALLOC) ...
 (version . PFALLOC)) ...
 (extension (version . PFALLOC) ...
 (version . PFALLOC))) ...
 (name (extension (version . PFALLOC) ...
 (version . PFALLOC)) ...
 (extension (version . PFALLOC) ...
 (version . PFALLOC))))

Say for example that we have 6 versions of the file
{FLOPPY}FLOPPY.TEDIT stored on a floppy. Then the cached
DIR alist could look like

((FLOPPY (TEDIT (1 . {PFALLOC}#55,72740)
 (2 . {PFALLOC}#55,72704)
 (3 . {PFALLOC}#55,72650)
 (4 . {PFALLOC}#55,72434)
 (5 . {PFALLOC}#55,72400)

20

 (6 . {PFALLOC}#55,72340))))

Functions to manage and access the DIR alist are

(\PFLOPPY.DIR.GET FILENAME RECOG)

(\PFLOPPY.DIR.PUT FILENAME RECOG PFALLOC)

(\PFLOPPY.DIR.REMOVE PFALLOC)

(\PFLOPPY.DIR.VERSION VERSION RECOG VALIST
FILENAME)

Cached Pilot Floppy PFALLOCS

The PFINFO PFALLOCS is a list of PFALLOC records which
describe successive allocations on the floppy. Some of the
PFALLOCs are leader page+file combinations. Some are free
blocks. One of the PFALLOCs is the allocation record for the filelist
(this PFALLOC tells us where the contents of PFILELIST should be
stored).

Each PFALLOC record has the form

PFALLOC (Datatype)

(DATATYPE PFALLOC
 (FILENAME

 (PREV FULLXPOINTER)
 NEXT
 START
 PMPAGE
 PLPAGE
 PFLE
 (WRITEFLG FLAG)
 (DELETEFLG FLAG)))

FILENAME is the name of the file that the PFALLOC corresponds
to. If the PFALLOC does not correspond to a file, then FILENAME
will be a list like (FREE) or (PFILELIST).

PREV points back to the preceding PFALLOC in the PFALLOCS
list.

NEXT points to the next PFALLOC in the PFALLOCS list.

START is the pilot page number of the first page of storage on the
floppy corresponding to the PFALLOC (the page after the marker
page preceding the allocation).

PMPAGE is a cached copy of the marker page preceding the
allocation corresponding to the PFALLOC.

PLPAGE is a cached copy of the leader page, if any, that begins
the allocation. (Only file allocations will have leader pages. If the
PFALLOC does not correspond to a file allocation then the
PLPAGE field is left NIL.)

PFLE is the file list entry in the Pilot filelist corresponding to this
PFALLOC.

21

WRITEFLG = T if there is a stream writing to the allocation
corresponding to this PFALLOC. That is, this PFALLOC
corresponds to a file, and a stream is writing to that file.

DELETEFLG = T if the PFALLOC corresponds to a file whose
deletion is pending. This may happen if some process is reading a
file that a second process DELFILEs. The PFALLOC is deleted for
real (i.e. made into a free block) when the first process gives up
control of the stream that is reading the file with CLOSEF.

PILOT FLOPPY STORAGE ALLOCATION

This section describes the Pilot floppy storage allocation strategy.

(\PFLOPPY.ALLOCATE LENGTH)

This function is called to generate the initial allocation PFALLOC
assigned to a stream. The PFALLOC must be of a definite length
and so there are other functions like \PFLOPPY.TRUNCATE and
\PFLOPPY.EXTEND which know how to split an incompletely used
up PFALLOC or a PFALLOC that is about to overflow.

\PFLOPPY.ALLOCATE returns a PFALLOC pointing to a free block
of storage that is at least LENGTH pages long. If LENGTH=NIL is
supplied, then the length is defaulted to somewhere between
DEFAULT.ALLOCATION and MINIMUM.ALLOCATION with
preference towards DEFAULT.ALLOCATION.

The strategy is to first select the largest free block available. Not
being able to find a free block causes \PFLOPPY.GAINSPACE to
be called and then \PFLOPPY.ALLOCATE retries.

Having obtained the PFALLOC pointing to the largest free block
available, \PFLOPPY.ALLOCATE determines if the free block is big
enough. If the free block is not big enough then
\PFLOPPY.GAINSPACE is called and \PFLOPPY.ALLOCATE
retries.

Now being in possession of a PFALLOC pointing to a sufficiently
large free block, the question is whether or not to split the
PFALLOC. If the length of PFALLOC exceeds LENGTH by
MINIMUM.ALLOCATION then PFALLOC is split into two free
blocks one of which will have length LENGTH and will be returned.
Otherwise, the PFALLOC is returned as is.

Splitting excessively large PFALLOCs is done in order that no
stream hog the floppy and thereby be unfair to other streams. It
may happen, for example in a freshly formatted floppy, that there is
just one or very few but large free blocks. It would be unfair to
hand out the only and very large free block to a stream and thereby
prevent a second stream from opening.

On the other hand, splitting a PFALLOC whose length exceeds
LENGTH by just a little bit is also undesirable because it leads to
fragmentation and consumption of storage by the marker page
overhead that must occur for each allocation. Thus, the length of

22

PFALLOC not exceeding LENGTH by MINIMUM.ALLOCATION is
considered to be close enough.

\PFLOPPY.ICHECK is called at the end of each
\PFLOPPY.ALLOCATE to do an integrity check of the cached
incore description of the floppy.

(\PFLOPPY.DEALLOCATE PFALLOC)

Deallocation is fairly easy. The two marker pages surrounding the
allocation pointed to by PFALLOC are made to say that the type of
the allocation between them is a free block.

\PFLOPPY.ICHECK is called at the end of each
\PFLOPPY.DEALLOCATE to do an integrity check of the cached
incore description of the floppy.

(\PFLOPPY.TRUNCATE PFALLOC LENGTH)

Truncation is also fairly easy. If PFALLOC is already of length
LENGTH or smaller then nothing needs to be done.

Otherwise \PFLOPPY.TRUNCATE changes the local situation on
the floppy from one of

MP ALLOC MP

to one of

MP ALLOC MP FREE MP

by setting the length of PFALLOC to LENGTH, creating another
PFALLOC to take up the slack and to be considered as a free
block, and creating and updating and writing out three marker
pages.

\PFLOPPY.ICHECK is called at the end of each
\PFLOPPY.TRUNCATE to do an integrity check of the cached
incore description of the floppy.

(\PFLOPPY.EXTEND PFALLOC)

This function gets called when an output stream is about to
overflow its initial allocation. \PFLOPPY.EXTEND is charged with
extending the length of PFALLOC’s storage allocation.

If PFALLOC is followed by a free block, then it suffices to let
PFALLOC cannibalize the following free block. The situation

MP ALLOC MP FREE MP

is changed to one of

MP ALLOC MP

by changing the length of PFALLOC to the sum of the length of
PFALLOC’s length, one page from the marker page between
PFALLOC and the free block which is eliminated, and the length of
the free block.

If PFALLOC is not followed by a free block, but instead is bumping
up against valuable data, then a different strategy is used.

23

\PFLOPPY.ALLOCATE is called to find a new and larger storage
area NEW for the data stored at the allocation pointed to by
PFALLOC. The data stored in the allocation pointed to by
PFALLOC is then copied into the allocation pointed to by NEW.
This is slightly time consuming, so the Lisp code prints the
message "Reallocating" in the PROMPTWINDOW when this kind of
activity is about to happen. After copying the data pointed to by
PFALLOC into the area pointed to by NEW, NEW nad PFALLOC
are made to exchange places. NEW is changed to point to where
the data used to live and PFALLOC is changed to point to where
the data has moved to. The marker pages around NEW and
around PFALLOC have to be updated and written out to the floppy.
The result, therefore, has the appearance of data crawling out of its
restricted cavity and kicking out the free block living from the bigger
cavity and then the free block moves over to where the data used
to live.

\PFLOPPY.ICHECK is called at the end of each
\PFLOPPY.EXTEND to do an integrity check of the cached incore
description of the floppy.

(\PFLOPPY.GAINSPACE LENGTH)

This function is charged with going out and hunting up space on a
floppy. \PFLOPPY.GAINSPACE returns after a free block of length
LENGTH has been made available.

The first thing to be done is to merge adjacent free blocks into
larger free blocks. This is done by calling function
\PFLOPPY.GAINSPACE.MERGE. \PFLOPPY.ICHECK is called
at the end of each \PFLOPPY.GAINSPACE.MERGE to do an
integrity check of the cached incore description of the floppy.

At this point \PFLOPPY.GAINSPACE checks to see if a free block
of length LENGTH has been made available, and if so, returns.

Otherwise, \PFLOPPY.GAINSPACE calls FLOPPY.FREE.PAGES
to determine whether a sufficiently large free block can be gained
just by compacting the floppy. If the number of free pages available
is greater than LENGTH, then compacting the floppy will have as
one of its effects the collection of all free space into a single free
block. Therefore, if the number of free pages available is greater
than LENGTH, then \PFLOPPY.GAINSPACE calls
FLOPPY.COMPACT to compact the floppy and then returns the
single free block that is created by the compactor.

If calling FLOPPY.FREE.PAGES tells \PFLOPPY.GAINSPACE that
there wouldn’t be a large enough free block created just by
compacting the floppy, then \PFLOPPY.GAINSPACE generates the
usual contiuable FILE SYSTEM RESOURCES EXCEEDED error
break. If the user responds by deleting some files and typing OK,
then \PFLOPPY.GAINSPACE continues onward by going back to
the top of its list of things to do and retrying its attempt to find a free
block of length LENGTH.

(\PFLOPPY.FREE.PAGES)

Just sums up the lengths of all the PFALLOCs pointing to free
blocks. This function gets called by the user function
FLOPPY.FREE.PAGES.

(\PFLOPPY.ICHECK)

24

Does an integrity check on the Lisp implementation’s incore cached
directory information.

The Lisp floppy implementation does not blithely trust itself to
always be doing the right thing, at least as far as the incore
description of how the floppy is arranged. It is somewhat important
that the in core description be absolutely legal and in agreement
with reality out on the floppy, because incorrect cached directory
structures may cause floppy operations to scramble the user’s
floppy confusing contents of files or real directory structure on the
floppy.

\PFLOPPY.ICHECK gets called near the end of each major
function in the Pilot floppy allocation code.

SYSOUT

Sysouting to floppy is kind of a hack. The sysout file that gets
written has to be broken into smaller files that will fit on individual
floppies. The small files are not ordinairy files but are Huge Pilot
files. The HUGEPAGESTART and HUGEPAGELENGTH fields in
the leader pages of these files become important.

\SFLOPPYFDEV (Variable)

The usual FLOPPY file device is \PFLOPPYFDEV. The sysout
FLOPPY file device is \SFLOPPYFDEV. (FLOPPY.MODE
’SYSOUT) by the user makes the switch between the two file
devices. The function SYSOUT seems to do (FLOPPY.MODE
’SYSOUT) automatically for the user, but in fact, floppy functions at
a lower level detect SYSOUT on the stack of function calls by a
certain amount of grungeyness and make the switch between file
devices when necessary.

(\SFLOPPY.OPENHUGEFILE FILE ACCESS RECOG
OTHERINFO FDEV OLDSTREAM)

Installed on \SFLOPPYFDEV and gets called when FILEIO opens a
stream for input or output when FLOPPY is in SYSOUT mode.
\SFLOPPY.OPENHUGEFILE returns a stream datatype. The
stream can be either input or output.

If the stream is to be an input stream, \SFLOPPY.INPUTFLOPPY is
called. If the stream is to be an output stream,
\SFLOPPY.OUTPUTFLOPPY is called.

The stream returned is in every way like a Pilot stream returned by
\PFLOPPY.OPENFILE with the exception that the DEVICE of the
stream is \SFLOPPYFDEV. Two other fields on the stream, F1 and
F2, point to the allocation record (PFALLOC) and leader page
(PLPAGE) for the stream. The PFALLOC and PLPAGE can be
conveniently accessed by using the FLOPPYSTREAM
ACCESSFNS.

(\SFLOPPY.READPAGES STREAM FIRSTPAGE# BUFFERS)

Installed on \SFLOPPYFDEV and called by FILEIO when FLOPPY
is in SYSOUT mode. Reads sectors off floppies into virtual
memory pages BUFFERS. FIRSTPAGE# is in FILEIO’s scheme of
counting the pages of a file, beginning with 0 for the first page of a

25

file. \SFLOPPY.READPAGES therefore fills BUFFERS with data
read from floppies beginning with the FIRSTPAGE# of STREAM.

\SFLOPPY.READPAGES is implemented by calling
\PFLOPPY.READPAGE. When \SFLOPPY.READPAGES is about
to run off the end of a floppy, \SFLOPPY.CLOSEFLOPPY and
\SFLOPPY.INPUTFLOPPY are called to bring in the next floppy.

(\SFLOPPY.WRITEPAGES STREAM FIRSTPAGE# BUFFERS)

Installed on \SFLOPPYFDEV and called by FILEIO when FLOPPY
is in SYSOUT mode. Writes contents of virtual memory pages
BUFFERS on to sectors of floppies. FIRSTPAGE# is in FILEIO’s
scheme of counting the pages of a file, beginning with 0 for the first
page of a file. \SFLOPPY.WRITEPAGES therefore writes to the
floppy beginning with the location corresponding to the
FIRSTPAGE# of STREAM.

\SFLOPPY.WRITEPAGES is implemented by calling
\PFLOPPY.WRITEPAGE. When \SFLOPPY.WRITEPAGES is
about to run off the end of a floppy, \SFLOPPY.CLOSEFLOPPY
and \SFLOPPY.OUTPUTFLOPPY are called to bring in the next
floppy.

(\SFLOPPY.CLOSEHUGEFILE STREAM)

Installed on \SFLOPPYFDEV and called by FILEIO to close a
sysout file when FLOPPY is in SYSOUT mode.

For output streams, does the usual \CLEARMAP plus a
\SFLOPPY.CLOSEFLOPPY on the last floppy being written.

There is some grungeyness to switch back to an old FLOPPY
mode if the FLOPPY mode was reset by calling function SYSOUT.

(\SFLOPPY.INPUTFLOPPY FLOPPYNAME FILENAME
OTHERINFO OLDSTREAM)

Called by \SFLOPPY.READPAGES when
 \SFLOPPY.READPAGES needs to go to the next floppy.

\SFLOPPY.INPUTFLOPPY prompts the user to "Insert floppy" and
does a (FLOPPY.WAIT.FOR.FLOPPY T) until the user does so.

Once the user has inputted the next floppy and
FLOPPY.WAIT.FOR.FLOPPY has returned,

 \SFLOPPY.INPUTFLOPPY calls \PFLOPPY.OPENFILE to open a
regular Pilot floppy stream to the piece of sysout file stored on the
floppy inserted.

If no OLDSTREAM is supplied, then the Pilot floppy stream created
by the call to \PFLOPPY.OPENFILE is returned. Otherwise, the
PFALLOC and PLPAGE cached in the F1 and F2 fields of the Pilot
floppy stream are pulled out and stuck into OLDSTREAM, after
which OLDSTREAM is returned.

(\SFLOPPY.OUTPUTFLOPPY FLOPPYNAME FILENAME
OTHERINFO OLDSTREAM)

Called by \SFLOPPY.WRITEPAGES when
 \SFLOPPY.WRITEPAGES needs to go to the next floppy.

\SFLOPPY.OUTPUTFLOPPY prompts the user to "Insert floppy"
and does a (FLOPPY.WAIT.FOR.FLOPPY T) until the user does
so.

26

Once the user has inputted the next floppy and
FLOPPY.WAIT.FOR.FLOPPY has returned,

 \SFLOPPY.OUTPUTFLOPPY tries to format the floppy. If there is
any problem with formatting the floppy, such as the floppy being
writeprotected, then the user is again asked to input a floppy.

Once the new floppy is formatted, \SFLOPPY.OUTPUTFLOPPY
calls \PFLOPPY.OPENFILE to open a regular Pilot floppy stream
which will be used to create a piece of the sysout file being stored
on floppies.

If no OLDSTREAM is supplied, then the Pilot floppy stream created
by the call to \PFLOPPY.OPENFILE is returned. Otherwise, the
PFALLOC and PLPAGE cached in the F1 and F2 fields of the Pilot
floppy stream are pulled out and stuck into OLDSTREAM, after
which OLDSTREAM is returned.

(\SFLOPPY.CLOSEFLOPPY STREAM LASTFLOPPYFLG)

If the STREAM is an input stream, then
\SFLOPPY.CLOSEFLOPPY just returns without doing anything.

If the STREAM is an output stream, then the leader pages and
marker pages for the piece of sysout file stored on this floppy are
written out. And as usual with Pilot streams, the updated filelist and
PSECTOR9 also have to be written out.

HUGEPILOT

HUGEPILOT mode is implemented in a way similar to SYSOUT
mode. The Huge Pilot file that gets written has to be broken into
smaller files that will fit on individual floppies. The small files are
not ordinairy files but are Huge Pilot files. The HUGEPAGESTART
and HUGEPAGELENGTH fields in the leader pages of these files
become important.

\HFLOPPYFDEV (Variable)

The usual FLOPPY file device is \PFLOPPYFDEV. The Huge Pilot
FLOPPY file device is \HFLOPPYFDEV. (FLOPPY.MODE
’HUGEPILOT) by the user makes the switch between the two file
devices.

(\HFLOPPY.OPENHUGEFILE FILE ACCESS RECOG
OTHERINFO FDEV OLDSTREAM)

Installed on \HFLOPPYFDEV and gets called when FILEIO opens a
stream for input or output when FLOPPY is in HUGEPILOT mode.
\HFLOPPY.OPENHUGEFILE returns a stream datatype. The
stream can be either input or output.

If the stream is to be an input stream, \HFLOPPY.INPUTFLOPPY is
called. If the stream is to be an output stream,
\HFLOPPY.OUTPUTFLOPPY is called.

The stream returned is in every way like a Pilot stream returned by
\PFLOPPY.OPENFILE with the exception that the DEVICE of the
stream is \HFLOPPYFDEV. Two other fields on the stream, F1 and
F2, point to the allocation record (PFALLOC) and leader page
(PLPAGE) for the stream. The PFALLOC and PLPAGE can be

27

conveniently accessed by using the FLOPPYSTREAM
ACCESSFNS.

(\HFLOPPY.READPAGES STREAM FIRSTPAGE# BUFFERS)

Installed on \HFLOPPYFDEV and called by FILEIO when FLOPPY
is in HUGEPILOT mode. Reads sectors off floppies into virtual
memory pages BUFFERS. FIRSTPAGE# is in FILEIO’s scheme of
counting the pages of a file, beginning with 0 for the first page of a
file. \HFLOPPY.READPAGES therefore fills BUFFERS with data
read from floppies beginning with the FIRSTPAGE# of STREAM.

\HFLOPPY.READPAGES is implemented by calling
\PFLOPPY.READPAGE. When \HFLOPPY.READPAGES is about
to run off the end of a floppy, \HFLOPPY.CLOSEFLOPPY and
\HFLOPPY.INPUTFLOPPY are called to bring in the next floppy.

(\HFLOPPY.WRITEPAGES STREAM FIRSTPAGE# BUFFERS)

Installed on \HFLOPPYFDEV and called by FILEIO when FLOPPY
is in HUGEPILOT mode. Writes contents of virtual memory pages
BUFFERS on to sectors of floppies. FIRSTPAGE# is in FILEIO’s
scheme of counting the pages of a file, beginning with 0 for the first
page of a file. \HFLOPPY.WRITEPAGES therefore writes to the
floppy beginning with the location corresponding to the
FIRSTPAGE# of STREAM.

\HFLOPPY.WRITEPAGES is implemented by calling
\PFLOPPY.WRITEPAGE. When \HFLOPPY.WRITEPAGES is
about to run off the end of a floppy, \HFLOPPY.CLOSEFLOPPY
and \HFLOPPY.OUTPUTFLOPPY are called to bring in the next
floppy.

(\HFLOPPY.CLOSEHUGEFILE STREAM)

Installed on \HFLOPPYFDEV and called by FILEIO to close a
Huge Pilot file when FLOPPY is in HUGEPILOT mode.

For output streams, does the usual \CLEARMAP plus a
\HFLOPPY.CLOSEFLOPPY on the last floppy being written.

(\HFLOPPY.INPUTFLOPPY FLOPPYNAME FILENAME
OTHERINFO OLDSTREAM)

Called by \HFLOPPY.READPAGES when
 \HFLOPPY.READPAGES needs to go to the next floppy.

\HFLOPPY.INPUTFLOPPY prompts the user to "Insert floppy" and
does a (FLOPPY.WAIT.FOR.FLOPPY T) until the user does so.

Once the user has inputted the next floppy and
FLOPPY.WAIT.FOR.FLOPPY has returned,

 \HFLOPPY.INPUTFLOPPY calls \PFLOPPY.OPENFILE to open a
regular Pilot floppy stream to the piece of Huge Pilot file stored on
the floppy inserted.

If no OLDSTREAM is supplied, then the Pilot floppy stream created
by the call to \PFLOPPY.OPENFILE is returned. Otherwise, the
PFALLOC and PLPAGE cached in the F1 and F2 fields of the Pilot
floppy stream are pulled out and stuck into OLDSTREAM, after
which OLDSTREAM is returned.

(\HFLOPPY.OUTPUTFLOPPY FLOPPYNAME FILENAME
OTHERINFO OLDSTREAM)

28

Called by \HFLOPPY.WRITEPAGES when
 \HFLOPPY.WRITEPAGES needs to go to the next floppy.

\HFLOPPY.OUTPUTFLOPPY prompts the user to "Insert floppy"
and does a (FLOPPY.WAIT.FOR.FLOPPY T) until the user does
so.

Once the user has inputted the next floppy and
FLOPPY.WAIT.FOR.FLOPPY has returned,

 \HFLOPPY.OUTPUTFLOPPY tries to format the floppy. If there is
any problem with formatting the floppy, such as the floppy being
writeprotected, then the user is again asked to input a floppy.

Once the new floppy is formatted, \HFLOPPY.OUTPUTFLOPPY
calls \PFLOPPY.OPENFILE to open a regular Pilot floppy stream
which will be used to create a piece of the Huge Pilot file being
stored on floppies.

If no OLDSTREAM is supplied, then the Pilot floppy stream created
by the call to \PFLOPPY.OPENFILE is returned. Otherwise, the
PFALLOC and PLPAGE cached in the F1 and F2 fields of the Pilot
floppy stream are pulled out and stuck into OLDSTREAM, after
which OLDSTREAM is returned.

(\HFLOPPY.CLOSEFLOPPY STREAM LASTFLOPPYFLG)

If the STREAM is an input stream, then
\HFLOPPY.CLOSEFLOPPY just returns without doing anything.

If the STREAM is an output stream, then the leader pages and
marker pages for the piece of Huge Pilot file stored on this floppy
are written out. And as usual with Pilot streams, the updated filelist
and PSECTOR9 also have to be written out.

