
7-1LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. CO
MMON LISP IMPLEMENTATION

This section describes new features and enhancements that

implement Common Lisp into the Lisp operating environment

within the Medley release. This information supplements the

Common Lisp Implementation Notes, Lyric release. Medley

enhancements are indicated with revision bars in the right margin.

New Features Since Lyric

The following description summarizes the new Common Lisp

implementation features that have been added or changed since

the Lyric release.

New compiler Interface -- The Medley compiler gives better

progress reports and it is now possible to invoke the compiler on

any definer (not just functions, as before).

New Implementation of Defstruct -- A new version of defstruct

compiles more compactly and gives more options so that defstruct

has at least as much functionality as the Interlisp record package.

Adoption of features and clarifications suggested by the
Common Lisp Cleanup Committee -- Among other changes,

the behavior of append on dotted lists is now better defined, and

a new function xcl:row-major-aref has been added.

Common Lisp Veneer on the Interlisp record package -- A

collection of macros that make the use of existing Interlisp

datatypes more appealing has been added.

Performance enhancements -- A closure caching scheme now

insures that repeated calls to symbol-functions of the same

symbol will return EQ compiled-function objects.

New opcodes have been added for several common list functions,

such as member and assoc.

Common Lisp Definers

The Medley release contains a new implementation of definers

and a reworking of the top level of the XCL Compiler. These

represent upward compatible changes that have the effect of

allowing the Common Lisp compiler to print out progress reports

indicating which definer is currently being compiled. To receive the

full benefit of these changes, recompile any file containing a

defdefiner expression.

It is now possible to compile individual definers by using any of the

following forms:

7-2

L
ISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Compile-Definer

(xcl:compile-definer name type)

Compile and install the definer of type type named name .

EXAMPLE:

(xcl:compile-definer ’foo ’structures)

In this example, the definer will compile and install the structures

definition of foo.

Compile-Form

(xcl:compile-form form)

Compile and evaluate form.

EXAMPLE:

(xcl:compile-form ’(progn (defconstant c 1) (defun foo (a b) (+ c a
b))))

In this example, the definer will compile and evaluate the progn

using compile-file semantics.

EXAMPLE:

(xcl:compile-form ’(with-collection (dotimes (i 10) (collect i))))

In this example, the definer returns:

(0 1 2 3 4 5 6 7 8 9)

Define-File-Environment

Rather than establishing il:makefile-environment props and

il:filetypes on the root name of a file, you can define a file

environment using the form:

(xcl:define-file-environment filename &key readtable package base compiler)

This produces an object of file-manager type xcl:file-
environments. The filename can be either a string or a symbol.

The rootname of the file is constructed by interning the filename in

the Interlisp package. Puts the compiler argument (if any) under

the il:filetype prop of the file rootname. Puts the readtable,

package and base arguments (if any) under the il:makefile-
environment prop of the file rootname. None of the arguments are

evaluated. There are no defaults.

EXAMPLE:

(xcl:define-file-environment myfile :package "XCL-USER" :readtable "XCL"
:compiler :compile-file)

In this example, compile-file is put under the il:filetype prop of

myfile. The readtable, XCL and compile arguments are put under

the il:makefile-environment prop of myfile.

NOTE: xcl:define-file-environment is a definer and hence will

not be installed if il:dfnflg is il:prop or if a file is prop loaded.

7-3LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Site-Name Special Uses

The following special variables are defined and may be set in your

init file to inform Common Lisp of site information:

xcl:*short-site-name*

This variable is used in the function short-site-name.

xcl:*long-site-name*

This variable is used in the function long-site-name.

EXAMPLES:

(setq xcl:*short-site-name* "AIS")

(setq xcl:*long-site-name* "Artificial Intelligence Systems")

In these examples, (short-site-name) returns "AIS" and (long-site-

name) returns "Artificial Intelligence Systems".

Record Access

The Medley release contains several methods for accessing

existing Interlisp records using Common Lisp syntax. These

features help to integrate Interlisp and Common Lisp. The following

sections describe these additions.

Define-Record

(xcl:define-record name interlisp-record-name

&key conc-name constructor predicate fast-accessors) [Definer]

Creates a structures object named by the symbol name that

provides Common Lisp accessors, settors, predicates and

constructors for the Interlisp record named by the symbol interlisp-

record-name. The Interlisp record must be defined before the

xcl:define-record expression is evaluated. The keyword

arguments are treated as in defstruct. The package of constructed

names is taken from the value of *package* at the time of

evaluation (as in defstruct). The system contains no predeclared

define-records.

EXAMPLE:

The form:

(xcl:define-record menu il:menu)

allows you to write:

(menu-items foo) and (setf (menu-items foo) fie)

rather than:

(il:fetch (il:menu il:items) il:of foo)

7-4

L
ISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Record-Fetch

(xcl:record-fetch record field object) [Macro]

Evaluates object. Does not evaluate record and field. Both record

and field must be symbols. Symbols with the same p-names are

interned in the Interlisp package and are used to construct an

il:fetch form. xcl:record-fetch may be used with setf and

expands to the suitable replace form.

Record-FFetch

(xcl:record-ffetch record field object) [Macro]

Similar to xcl:record-fetch, but an il:ffetch form is generated

instead. Evaluates object. Does not evaluate record and field .

Both record and field must be symbols. Symbols with the same

p-names are interned in the Interlisp package and are used to

construct an il:ffetch form. Ffetch may be used with setf and

expands to the suitable freplace form.

Record-Create

(xcl:record-create record &rest keyword-pairs) [Macro]

Evaluates the second element of each pair. Does not evaluate

record (record must be a symbol) . A symbol with the same p-

name is interned in the Interlisp package and used to construct an
il:create form. The rest of the arguments form keyword pairs. The

first element of each pair should be a symbol such that a symbol

with the same p-name exists in the Interlisp package and names

either a valid slot for this record or is one of :using, :copying,
:reusing, or :smashing.

 Array Reference

(xcl:row-major-aref array index) [Function]

 Returns the element of array given by the row-major-index index.

The array can be of any dimension. This function can be used

with setf .

 Shadowing of Global Macros

 The XCL Compiler now properly handles shadowing of global

macros by lexical functions. In the Lyric Compiler, lexical functions

defined with flet did not shadow global definitions of the same

name. This has been fixed in Medley.

 Evaluating Load-time Expressions

 The XCL Compiler now handles il:loadtimeconstant correctly.

The new Compiler substitutes the entire expression for each

reference to the value of a load-time constant. There are potential

problems if the code depends on the expression being evaluated

exactly once, e.g. if it contains (IDATE).

Common Lisp Defstruct Options

The Medley release contains a new implementation of defstruct
that offers greater compiled-code compaction, and several new

extensions that increase efficiency. This implementation

introduces functionality that allows defstruct to parallel the Interlisp

7-5LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

record module in flexibility. These features also help to integrate

Interlisp and Common Lisp. The following sections describe these

additions.

Defstruct Options

:inline

Can be one or both of :accessor and :predicate or t, implying

’(:accessor :predicate) or nil, implying no optimizations allowed or

:only, implying all accessors and the predicate will be inline only

and not funcallable (not usable with the Lisp primitive "funcall").

The default is ’(:accessor :predicate).

Copiers and constructors are never inline. The option (:inline :only)

implies that no funcallable accessors will be generated (similarly,

the predicate, if any, will not be funcallable).

:fast-accessors

Can be t or nil. t implies inline accessors will not type check. The

default is nil.

Note that funcallable accessors (if any), always type check, if

possible.

NOTE: This represents a change from the Lyric implementation,

which allowed specification of a list of slot names that had fast

inline accessors.

:template

Can be t or nil, t implies that no datatype will be instantiated.

(:template t) implies no :type option. The default is nil.

Templated defstructs have no predicates, copiers or constructs. It

is an error to supply any such option in combination with (:template

t). Templated defstructs are intended to be used as are

IL:blockrecord’s. It is possible for a templated defstruct to include

another templated structure, but it is an error for a standard

defstruct to include a templated structure.

Funcallable accessors (accessors that may be used with the Lisp

primative "funcall") share code with suitable closure templates if

the defstruct is compiled with the XCL Compiler. Byte compiled

defstructs still generate explicit defun’s for all funcallable accessors.

Defstruct Slot Options

:type

The following specialized types are recognized:

(unsigned-byte {1 - 16})

(signed-byte {16, 32})

float, etc.

(member t nil)

il:fullpointer

il:xpointer

il:fullxpointer

7-6

L
ISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Warning When Using Defstruct

Defstruct automatically generates a number of auxilliary functions

without checking whether redefining those functions will affect the

system. To avoid redefining key functions, you should be aware

of the names that will be used. For example:

Do not attempt to define a Structure named TREE. This use of

Defstruct implicitly redefines the built-in Common Lisp function

COPY-TREE, which renders your system inoperable.

If you have already tried to define a (DEFSTRUCT TREE A B)

structure by mistake, you will need to reload your system.

Macros for Collecting Objects

xcl:with -collection

(xcl:with-collection &body forms) [Macro]

(xcl:collect form) [Macro]

This pair of macros is provided for efficiently collecting objects into

a list. In Common Lisp, there is no direct facility provided for doing

this, so one must either push objects onto a list, then reverse it, or

maintain a tail pointer to the list and use rplacd to add new items.

The latter has an efficient implementation in Xerox Common Lisp,

and xcl:with-collection is provided to take advantage of it.

Lexically within the body of an xcl:with-collection, the macro

xcl:collect is defined. It will append the value of its argument to the

end of the list being collected. The value of xcl:with-collection is

the collected list.

xcl:collect may be used inside of functions passed as arguments

to other functions.

EXAMPLE:
(xcl:with-collection
 (maphash
 #’(lambda (key val)
 (when (interesting-p val) (xcl:collect key)))
 the-hash-table))

will collect a list of all the "interesting" keys in the order that they

were encountered.

It is an error to use xcl:collect outside the scope of an xcl:with-
collection. Proper lexical nesting is observed, so an instance of

xcl:collect applies to the most deeply nested xcl:with-collection

that is is found in.

7-7LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Macros for Writing Macros

xcl:once-only

(xcl:once-only ({ variable }*) &body forms) [Macro]

This macro is provided to aid in writing macros. xcl:once-only

helps solve the problem of multiple evaluation of subforms of a

macro.

EXAMPLE:

(defmacro test (reference form)
 ‘(setf ,reference (cons ,form ,form)))

This example has the problem that form will be evaluated twice. To

avoid this, one might instead write:

(defmacro test (reference form)
 (let ((value (gensym)))
 ‘(let ((,value ,form))
 (setf ,reference (cons ,value ,value)))))

This solves the problem of multiple evaluation, but introduces some

others. If form is in fact something simple, like a reference to a

variable or a literal, there was no need to create the temporary

variable, thus "wasting" a symbol. This can be extremely important

in Xerox Common Lisp as symbol space is limited and symbols are

never reclaimed. If there are many temporary values to be

computed, the macro definition becomes cluttered with calls to

gensym that obscure the essence of the code.

xcl:once-only helps solve these problems. For each of the

variables listed, xcl:once-only determines if its value (at

macroexpansion time) is simple: a symbol or a literal. If it is,

appearances of that variable in the macroexpansion will remain

unchanged. If it is not, the macroexpansion will contain code to

store the value in a temporary gensym’ed variable and use that

variable in the macroexpansion. Thus, the example could be written

as

(defmacro test (reference form)
 (xcl:once-only (form)
 ‘(setf ,reference (cons ,form ,form))))

Then (test (aref the-array x) y) will expand to

something like

(setf (aref the-array x) (cons y y))

while (test (aref the-array x) (random-form)) will

expand to something like

(let ((#:g377 (random-form)))
 (setf (aref the-array x) (cons #:g377 #:g377)))

Note that xcl:once-only does not attempt to preserve order of

evaluation. If this is important then you will still have to create

temporary variables yourself.

7-8

L
ISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Common Lisp Append Datatypes

A clarification adopted by X3J13 involves the behavior of the

APPEND function with non-lists. The cdr of the last cons in any

but the last argument given to APPEND is discarded (whether NIL

or not) when preparing the list to be returned. In the case where

there is no last cons (i.e., the argument is not a list) in any but the

last list argument, the entire argument is effectively ignored. In this

situation, if the last argument is a non-list, the result of APPEND

can be a non-list. NB: APPEND and COPY-LIST now produce

different results for non-lists.

EXAMPLE:

(append ’(a b c . d) ’())

produces the result:

(a b c)

EXAMPLE:

(append ’(a b . c) ’() 3)

produces the result:

(a b . 3)

EXAMPLE:

(append 3 17)

produces the result:

17.

Closure Cache

The Medley sysout contains a closure cache that provides

increased time and space efficiency. Less new memory is

allocated because repeated calls to symbol-function of the same

symbol now will cons exactly one closure object. Repeated calls

to symbol-function of the same symbol now return EQ- compiled

function objects.

Symbols and Packages

Pkg -goto and In-package

PKG-GOTO is now a synonym for IN-PACKAGE. The PKG-GOTO

function can be used to change packages in an exec.

PKG-GOTO takes one argument, which can be either a double-

quoted string, a symbol, or a package structure. This function is

used to set package in an exec.

(xcl:pkg-goto package-name &key nicknames use) [Function]

PKG-GOTO operates like IN-PACKAGE, but asks for confirmation

if a new package is being created. The function is useful at the top

level in the exec, to avoid creating new packages when a name is

misspelled.

Defpackage Export argument

7-9LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Defpackage’s EXPORT argument now accepts strings. Optionally,

strings can be given to :EXPORT instead of symbols. This is

recommended when defpackage is used in the makefile-

environment property of a file. The strings are interned in the

package being defined and then exported.

Debugging Tools

Breaking

Even with HELPDEPTH set to zero, some errors do not cause a

break. In Koto and the old Interlisp execs in Lyric, the workaround

is:

(SETTOPVAL ’HELPFLAG ’BREAK!)

In Medley and Lyric’s new execs, HELPFLAG is bound but not

continually reset. The workaround:

(SETQ HELPFLAG ’BREAK!)

affects the current exec until the next time you call RESET (or

control-D). If you want the change in HELPFLAG to be seen by

other processes, you still need to use SETTOPVAL, and RESET

any execs in which you want to see the effect.

For related information, see the Medley error system variable

XCL:*BREAK-ON-SIGNALS* described in Appendix E.

Advising

In Lyric, putting a second piece of advice on a function caused the

system to believe that the function was in fact not advised, so any

further advice threw out the already existing advice. This has been

fixed. In Medley, the correct list entries are made regardless of

whether the function was previously advised.

In Lyric, loading a file with advice caused multiple instances of the

advice to be instantiated. To prevent this, ADVISE is now changed

in Medley in the following way: When a new piece of advice is put

on a function, the system examines the already existing advice to

see if the some advice is already there. If so, the old advice is

removed before adding the new advice. Sameness is determined

by a test similar to CL:EQUALP, except that case distinctions are

significant in strings and characters. The priority and location of the

advice is taken into account when determining the "sameness."

This makes it possible, for instance, to have identical advice be

both :FIRST and :LAST.

Advice is no longer replicated when loaded more than once.

The debugger and inspector now display interpreted lexical

closures conveniently. Displayed lexical closure contents include

the function contained, and any lexical bindings in the closure.

Compiled closures are not conveniently inspectable. Common Lisp

eval stack frames show their associated lexical environment in a

similar manner.

The :when option to XCL:BREAK-FUNCTION no longer causes

the broken function to return NIL when the break is not taken. The

correct values are returned.

7-10

L
ISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Argument Names Displayed for Interpreted Functions

In the debugger, the frame inspector window will now display the

argument names for interpreted Common Lisp functions.

Previously, it gave them pseudonames "arg0" "arg1" etc.

Lexical Variables Evaluated by Debugger

The debugger EVAL command now evaluate expressions in the

lexical environment --i.e., you can evaluate an expression and use

variables that are lexically bound in your code. Only the lexical

environment at the point of the break can be evaluated. You can’t

presently back up to any given lexical environment.

EXAMPLE:

(defun fact(x)(if(= 1 x)nil(*x(fact(1-x)))))

(fact 4)

;; breaks. if you then type

EVAL x

2

Pathname Component Fixed in FS-ERROR

In Lyric, only one of the three FS-ERROR conditions was passed a

pathname component, resulting in the File Cacher not knowing

which file had the error, or resulting in pathname being lost when

PROTECTION VIOLATION or FILE SYSTEM RESOURCES

EXCEEDED were signaled. This problem occurred most noticeably

in Lyric when Interlisp errors were translated to XCL. This condition

has been fixed in Medley. FS-ERROR now correctly receives all

the pathname components.

Compiler Optimizations

Warning when using LABELS construct

In Lyric, use of the LABELS construct generated circular structure

that would not get collected. Interpreted, a LABELS construct

always creates this non-collectible structure. Compiled, such

structure would be created if there were non-tail-recursive or

mutually referencing subfunctions. The values of any closed-over

variables are captured by this structure and thus also not collected,

potentially causing large storage leaks. The latter situation has

been relieved somewhat for Medley.

In Medley, the unavoidable circularity has been reduced to include

only the mutually referencing functions, but not any of the other

data that they access. Thus, the uncollectable structure is created

only when a new copy of the code blocks are created, such a by

compiling the function containing the LABELS rather than each time

that function is called.

COMS added to dfasl files

The Medley compiler has been modified to better handle the

il:define-file-info, and defpackage forms. Now, loading a dfasl file

7-11LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

is not implicitly SYSLOAD. Since the file COMS for the file is now

included in the dfasl, that file will be noticed by the file manager

unless the load is explicitly SYSLOAD. (SYSLOADing of compiled

lcom and dfasl files is recommended.)

In Lyric, dfasls of file manager files did not contain the COMS of

the file. In Medley, COMS are present in dfasl files, just as they

are in lcom files. As with lcom files, the COMS will not be loaded

when the LDFLG argument to LOAD is SYSLOAD, nor will the

name of the file be added to FILELST, but instead will be added to

SYSFILES.

Note: We discourage loading either sort of compiled file (lcom or

dfasl) with any value for LDFLG but SYSLOAD. Unless you intend

to edit a file, you should always load it SYSLOAD. Even when you

intend to edit it, it is usually preferable to SYSLOAD it and then load

the source PROP. If there are too many source files for this to be

practical, we recommend use of the WHERE-IS Library module.

While the location of definitions is made known to the edit interface

when files are loaded, it can be very inefficient when files are not

SYSLOADed. If, for example, you load ten compiled files with

LDFLG=NIL and then evaluate (ED ’FOO), then the COMS of all

ten files must be searched for definitions of each manager type with

name FOO. With forty manager types this comes to 400 parses of

COMS -- a time-consuming operation. If you instead load the

compiled files SYSLOAD and the sources PROP, then no COMS

need be searched, as checking for definitions of each manager

type is sufficient.

Loadflg argument

The Medley release contains a new keyword argument to cl:load.

(cl:load filename &key verbose print if-does-not-exist loadflg)

The loadflg argument follows the sematics of the loadflg argument

to il:load, with the exception that the loadflg argument will always

be interned in the Interlisp package.

EXAMPLE:

(cl:load "Mycompiled-file.dfasl" :loadflg :sysload)

In this example, "Mycompiled-file.dfasl" will load without the file

manager noticing that file.

Note: As explained in the previous section, we discourage loading

either sort of compiled file (lcom or dfasl) with any value for ldflg

but SYSLOAD.

Changes in CL:MAP, CL:WRITE-STRING, CL:COERCE , CL:GENSYM and IL:DEFERREDCONSTANT

In Lyric, a compiled call to CL:MAP that had been used for effect

would occasionally cons up a new list anyway. It would fail in the

case that the first argument was a constant that evaluated to NIL,

but not NIL itself, e.g. ’NIL. This has been fixed and no longer

occurs in Medley.

CL:WRITE-STRING is now twice as fast and creates no new

structure.

7-12

L
ISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

CL:COERCE now correctly returns the original object in all cases

where Common Lisp and Lisp require it.

The CL Compiler now compiles CL:GENSYM properly.

IL:DEFERREDCONSTANT is now handled correctly by the XCL

compiler.

ADD.PROCESS no longer coerces the process name to a symbol.

Rather, process names are treated as case-insensitive strings.

Thus, you can use strings for process names, and when typing

process commands to an exec, you need not worry about getting

the alphabetic case correct.

Compiler keeps Special &REST arguments

The CL Compiler now retains special &REST arguments. The

Lyric compiler threw away special &REST arguments. This has

been fixed in the Medley CL Compiler.

Compiler ignores TEdit formatting

COMPILE-FILE will now ignore TEdit formatting, but only if TEdit is

loaded.

Compiler notices Tail-recursive Lexical Functions

The XCL Compiler now performs tail recursion elimination on

FLETed lexical functions.

Compiler Error Message "BUG: Inconsistent stack depths seen"

You may occasionally see this error message while compiling.

Normally, error messages from the compiler beginning with "BUG"

indicate an internal compiler error. In this particular case, the

compiler error may reflect an error in the code you are compiling.

There is currently no compile-time argument checking. The

compiler performs an optimization that turns a tail-recursive

function call into a jump back to the beginning of the function. If this

tail-recursive call has the wrong number of arguments, the stack

modeler in the assembler will detect this as incosistent stack

depths, leading to the above error message.

EXAMPLE:

 (defun bad-length (x n)

 (if (endp x) n (bad-length (cdr x))))

Compiling this form will result in the error "BUG: Inconsistent stack

depths seen." The recursive call to bad-length has only one

argument, but the function expects two.

Thus, if you see this error message, you should check for tail-

recursive function calls with the wrong number of arguments.

Format ~C and WRITE-CHAR

In accordance with a recommendation of X3J13, the ~C FORMAT

operation with no modifiers now behaves exactly the same as

WRITE-CHAR for characters with no bits. The Medley release of

XCL conforms to this; the Lyric release did not. If you need to

obtain the Lyric behavior of ~C, use ~:C.

7-13LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

WITH-OUTPUT-TO-STRING and WITH-INPUT-FROM-STRING

For consistency with WITH-OPEN-STREAM and WITH-OPEN-

FILE, WITH-OUTPUT-TO-STRING and WITH-INPUT-FROM-

STRING now close the stream on exit from the form. WITH-

OUTPUT-TO-STRING is now significantly faster when writing long

strings.

7-14

L
ISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

[This page intentionally left blank]

