
3-37LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

3-38 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/ INTERLISP-D INTEGRATION

VOLUME III—INPUT/OUTPUT

Chapter 24 Streams and Files

The Xerox Common Lisp file system supports multiple streams

open simultaneously on the same file. This is an incompatible

change to the semantics of Interlisp-D. You may have to modify

old programs if they have not followed the guidelines listed in Sec

24.5 of the Interlisp-D Reference Manual. Some of the implications

of this change for Interlisp programs are described below.

In prior releases of Interlisp-D, the system treated the name of an

open file as a synonym for the stream open on the file. This meant

that only one stream could be open at any time on a given file. In

the Lyric release, a file name is no longer a unique name for an

open stream. Thus, file names are no longer acceptable as the

file/stream argument to any input/output or file system function that

operates on an open stream (READ, PRINT, CLOSEF,

COPYBYTES, etc). The only non-stream values acceptable as

stream designators are the symbols NIL and T, designating the

primary and terminal input/output streams. An attempt to use a

litatom, even a "full file name," as a stream designator signals the

error "LITATOM ’streams’ no longer supported." Strings no longer

designate an input stream whose source is the string itself—

programs should call OPENSTRINGSTREAM instead, or use the

comparable Common Lisp forms, such as CL:WITH-INPUT-FROM-
STRING.

The functions OPENFILE and OPENSTREAM are now

synonymous—both return a stream instead of a "full file name."

The functions INPUT and OUTPUT also return streams. One

exception to this is that INPUT and OUTPUT return T in the case

where the primary input or output stream was previously directed to

the terminal. However, this special behavior is for the Lyric release

only; we recommend that you convert old code that depended on

testing (EQ (OUTPUT) T). Note that the values of the variables

STANDARD-INPUT and *STANDARD-OUTPUT* are always

streams, even if they are directed to the terminal.

The function FULLNAME can be used to obtain the name of a

stream. For your convenience, the print syntax of streams now

includes the name of the stream (if to a file) and its access (input,

output, etc.). Functions, such as UNPACKFILENAME, that

manipulate file names generally accept a stream as well, extracting

the name of the file from the stream.

INFILEP still returns a full file name, as it is merely recognizing a

file, not opening a stream to it. Programmers should be wary of

code that subsequently tries to use the value of INFILEP as a

stream argument. And, of course, the FILENAME argument to

OPENSTREAM is still a name (a symbol or string), not a stream.

OPENSTREAM also accepts a Common Lisp pathname as its

FILENAME argument.

3-39LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

The function CLOSEALL is no longer implemented. The function

OPENP returns NIL when passed a file name (or anything else but

an open stream). However, for the Lyric release, (OPENP NIL)

still returns a list of all streams open to files.

The functions GETFILEINFO and SETFILEINFO can still be given

either an open stream or a file name. However, in the latter case,

the request refers to the file, not to any stream open on the file.

Thus, requesting the value of the attribute LENGTH for a file name

may return a different value than requesting the value of the

attribute LENGTH for a stream currently open on the file.
GETFILEINFO returns NIL if given a file name and an attribute that

only makes sense for streams (e.g., ACCESS,

ENDOFSTREAMOP).

There is no difference between Common Lisp and Interlisp

streams. A stream opened by an Interlisp function can be passed

as argument to a Common Lisp input/output function, and vice

versa.

Even though multiple streams per file are supported, the streams

must still obey consistent access rules. That is, if a stream is open

for output, no other streams on that file can be opened. It is not

possible to RENAMEFILE or DELFILE a file that has any open

stream on it.

The RS-232 or TTY ports are inherently single-user devices (rather

than real files) thus, multiple streams cannot be open

simultaneously on RS-232 or TTY.

Section 24.15 Deleting, Copying, and Renaming Files

(III:24.15)

The support of multiple streams per file now makes it possible to

use COPYFILE without worrying about there being other readers of

the file, in particular even when there is already a stream open on

the file for sequential-only access (a case that failed in prior

releases). Of course, COPYFILE cannot be used if the file already

has an output stream open.

Chapter 25 Input/Output Functions

Variables Affecting Input/Output

There are several implicit parameters that affect the behavior of the

input/output functions: the numeric print base, the primary output

file, etc. In Common Lisp, these parameters are controlled by

binding special variables. In Interlisp they are controlled by a

functional interface; e.g., an output expression is wrapped in
(RESETFORM (RADIX 8) --) to cause numbers to be printed in

octal.

Where the input/output parameters in Common Lisp and Interlisp

have essentially the same semantics, they have been integrated in

3-40 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/ INTERLISP-D INTEGRATION

Lisp. That is, binding the Common Lisp special variable and calling

the Interlisp function are equivalent operations, and they affect both

Interlisp and Common Lisp input/output. However, it is

considerably more efficient to bind a special variable than to call a

function in a RESETFORM expression. In addition, binding a

variable has only a local effect, whereas calling a function to side-

effect the input/output parameters can also affect other processes.

Thus, you are encouraged to use special variable binding to

change parameters formerly changed via functional interface.

All of these variables are accessible in both the Common Lisp and

Interlisp packages, so no package qualifier is required when typing

them.

These parameters are as follows:

PRINT-BASE vs RADIX Binding *PRINT-BASE* to an integer n from 2 to 36 tells the

printing functions to print numbers in base n. This is equivalent to

(RADIX n). Note: this variable should not be confused with

PRINT-RADIX, another Common Lisp variable that controls

whether Common Lisp functions include radix specifiers when

printing numbers.

STANDARD-INPUT vs INPUT Binding *STANDARD-INPUT* to an input stream specifies the

stream from which to read when an input function’s stream

argument is NIL or omitted. Evaluating *STANDARD-INPUT* is

the same as evaluating (INPUT), except that (INPUT) returns T if

the primary input for the process is the same as the terminal input

stream (this compatibility feature is for the Lyric release only).

STANDARD-OUTPUT vs OUTPUT Binding *STANDARD-OUTPUT* to an output stream specifies the

stream to which to print when an output function’s stream argument

is NIL or omitted. Evaluating *STANDARD-OUTPUT* is the same

as evaluating (OUTPUT) except that (OUTPUT) returns T if the

primary output for the process is the same as the terminal output

stream (this compatibility feature is for the Lyric release only).

PRINT-LEVEL & *PRINT-LENGTH*
vs PRINTLEVEL Binding *PRINT-LEVEL* to a positive integer a and *PRINT-

LENGTH* to a positive integer d is equivalent to calling

(PRINTLEVEL a d). Binding either variable to NIL is equivalent to

specifying a value of -1 for the corresponding argument to

PRINTLEVEL, i.e., it specifies infinite depth or length. Note that in

Interlisp, print level is "triangular"—the print length decreases as the

depth increases. In Common Lisp, the two are independent. Thus,

although print level for both Interlisp and Common Lisp is controlled

by a common pair of variables, the Interlisp and Common Lisp print

functions interpret them (specifically *PRINT-LENGTH*) slightly

differently. In addition, Interlisp observes print level only when

printing to the terminal, whereas Common Lisp observes it on all

output.

READTABLE vs SETREADTABLE Binding *READTABLE* to a readtable specifies the readtable to

use in any input/output function with a readtable argument omitted

or specified as NIL. Evaluating *READTABLE* is the same as

evaluating (GETREADTABLE). There is no longer a "NIL" or "T"

readtable in Interlisp. See the discussion of readtables for more

details.

3-41LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Although the binding style is to be preferred to the RESETFORM

expression, one difference should be noted with respect to error

checking. In a form such as

 (RESETFORM (RADIX n)
 some-printing-code)

the value of n is checked immediately for validity, and an error is

signalled if n is not an integer between 2 and 36. However, in

 (LET ((*PRINT-BASE* n))
 some-printing-code)

there is no error checking at the time of the binding; rather, an error

will not be signalled until the code attempts to print a number.

Similarly, the values of *STANDARD-INPUT* and *STANDARD-
OUTPUT* must be actual streams, not the values that print

functions coerce to streams, such as NIL, T or window objects.

Integration of Common Lisp and Interlisp Input/output Functions

Common Lisp and Interlisp have slightly different rules for reading

and printing, regarding such things as escape characters, case

sensitivity and number format. Each has two kinds of printing

function, an escaped version (intended for reading back in) and an

unescaped version. In order that Common Lisp and Interlisp

programs can more freely intermix, Xerox Lisp isolates most of the

reading/printing differences in the readtables used by both

languages, rather than in the functions themselves. The exact

rules have been chosen as a reasonable compromise between

backward compatibility with Interlisp and integration with Common

Lisp. This section outlines the details of this integration.

In what follows, the phrase "the readtable" generally refers to the

readtable in force for the read or print operation being discussed.

Specifically, this means an explicit readtable (other than NIL or T)

passed as readtable argument to an Interlisp function, or else the

current binding of *READTABLE*. See the section on readtables

for more details.

Section 25.2 Input Functions

The functions IL:READ and CL:READ, given the same readtable,

interpret an input in exactly the same way. That is, the functions

obey Common Lisp syntax rules when given a Common Lisp

readtable, and Interlisp syntax when given an Interlisp readtable.

Thus, the principal difference between the two is in the functionality

provided by CL:READ’s extra arguments: end of file handling and

the ability to specify that the read is recursive, which is mostly

important when reading input containing circular structure

references (the ## and #= macros). See Common Lisp, the

Language for details of CL:READ’s optional arguments.

There is one further difference between IL:READ and CL:READ, in

the handling of the terminating character. If the read terminates on

a white space character, CL:READ consumes the character, while

IL:READ leaves the character in the buffer, to be read by the next

input operation. Thus, IL:READ is equivalent to CL:READ-
PRESERVING-WHITESPACE. This difference is so that Interlisp

3-42 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/ INTERLISP-D INTEGRATION

code that calls (READC) following a (READ) of a symbol will

behave consistently between Koto and Lyric.

The Interlisp function SKREAD now defaults its readtable argument

to the current readtable, viz., the value of *READTABLE*, rather

than FILERDTBL. This makes it consistent with all the other input

functions, and is usually the correct thing, especially with the new

reader environments used by the File Manager, but it is an

incompatible change from Koto. SKREAD is also now

implemented using Common Lisp’s *READ-SUPPRESS*
mechanism, which means that, unlike in Koto, it does something

reasonable when it encounters read macros.

In the Medley release, reading in bitmaps from files is significantly

faster.

Section 25.3 Output Functions

The discussion here is limited to the four basic printing functions:

the unescaped and escaped Interlisp printing functions (IL:PRIN1,
IL:PRIN2) and the corresponding Common Lisp functions

(CL:PRINC, CL:PRIN1). All other print functions ultimately reduce

to these. For example, IL:PRINT calls IL:PRIN2; CL:FORMAT

with the ~S directive performs a CL:PRIN1.

IL:PRIN1 is essentially unchanged from previous releases. It uses

no readtable at all, so is unaffected by the value of *READTABLE*.
It can be thought of as implicitly using the INTERLISP readtable.

Roughly speaking, IL:PRIN2 and CL:PRIN1 behave the same

when given the same readtable. In particular, they both produce

output acceptable to either READ function given the same

readtable. Their minor differences are listed below.

CL:PRINC behaves like CL:PRIN1, except that it never prints

escape characters or package prefixes. Thus, unlike IL:PRIN1, it is

affected by the value of *READTABLE*.

For the benefit of user-defined print functions, IL:PRIN2 and

CL:PRIN1 bind *PRINT-ESCAPE* to T, while IL:PRIN1 and

CL:PRINC bind it to NIL. Thus, the print function can always

examine *PRINT-ESCAPE* to decide whether it needs to print

objects in a way that will read back correctly (Common Lisp user

print functions may want to use CL:WRITE to pass *PRINT-
ESCAPE* through transparently; Interlisp functions should choose
IL:PRIN2 or IL:PRIN1 appropriately).

Printing Differences Between IL:PRIN2 and CL:PRIN1

There are two respects in which the Interlisp print functions (both

IL:PRIN1 and IL:PRIN2) differ from the Common Lisp ones,

independent of readtable:

Line Length. The Interlisp functions respect the output stream’s

line length, while the Common Lisp functions all ignore it (they

never insert newline characters when output approaches the right

margin).

3-43LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Print Level. The Interlisp functions respect the print level variables

only when printing to the terminal (unless PLVLFILEFLG is true,

see the Interlisp-D Reference Manual) or when printing with a

Common Lisp readtable, whereas the Common Lisp functions

respect them on all output.

Internal Printing Functions

Interlisp has several functions (e.g., NCHARS, STRINGWIDTH,

CHCON, MKSTRING) that operate on the "prin1 pname" of an

object, or optionally on its "prin2 pname" when given an extra flag

and readtable as arguments. These functions are essentially

unchanged in Lyric.

In terms of the discussion above, the "prin1 pname" of an object

continues to be the characters that would be produced by a call to

IL:PRIN1 at infinite print level and line length, and with *PRINT-
BASE* bound to 10 (unless PRXFLG is true, see Interlisp-d

Reference Manual). The "prin2 pname" of an object is the list of

characters that would be produced by a call to IL:PRIN2 (or

CL:PRIN1) using the specified readtable (or *READTABLE* if none

is given), again at infinite print level and line length.

Exception: the function STRINGWIDTH computes the width of the

expression as if it were printed at the current *PRINT-LEVEL* and

PRINT-LENGTH.

Printing Differences between Koto and Lyric

The Common Lisp and Interlisp printing functions use the same

strategy for escaping characters in symbol names. Because of this,

symbols may print differently in Lyric than they did in Koto, for two

reasons: the use of the Common Lisp multiple escape character,

and the escaping of numeric print names. Although the

appearance is different, the functionality is the same—symbols are

still printed in a way that allows them to be correctlyread.

Roughly speaking, the multiple escape character is used to escape

symbol names that would require two or more single escape

characters. Thus, for example, a symbol that printed as %(OH%
NO%) in Koto will print in Lyric as |(OH NO)|. However, in the old

readtables that lack a multiple escape character (e.g., OLD-

INTERLISP-T), the single escapes are still used. Multiple escapes

are also used to print a symbol containing lower-case letters when

the readtable is case-insensitive, e.g., |Small| in a Common Lisp

readtable. Keep in mind also that some additional characters are

now "special", e.g., colon in all new readtables, semi-colon in

Common Lisp. Thus, the typical NS FIle "full name" will be printed

with the multiple escape character.

Since it is now possible to create symbols that have "numeric" print

names, such symbols must be printed with suitable escape

characters, so that on input they are not misinterpreted as

numbers. For example, the symbol whose print name is "1.2E3" is

printed as |1.2E3|. In read tables lacking a multiple escape

character, the single escape character is used instead, e.g.,

3-44 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/ INTERLISP-D INTEGRATION

%1.2E3 in the old Interlisp T readtable. A print name is considered

numeric according to the definition of "potential number" in

Common Lisp (p. 341). Even if such a symbol is not readable in

the current system as a number, it still needs to be escaped in case

it is read into another system that treats it as numeric (either

another Common Lisp implementation, or a future implementation

of Xerox Lisp). Thus, some old Interlisp symbols now print escaped

where they didn’t in Koto; e.g., the PRINTOUT directive |.P2| is a

potential number.

Bitmap Syntax

Bitmaps are printed in a new syntax in Lyric. When *PRINT-
ARRAY* is NIL (the default at top level), a bitmap prints in roughly

the same compact form as previously:

 #<BITMAP @ nn,nnnnnn>

If *PRINT-ARRAY* is T, a bitmap prints in a manner that allows it to

be read back:

 #*(Width Height [BitsPerPixel])XXXXXXXXX...

Width and Height are measured in pixels; BitsPerPixel is supplied

for bitmaps of other than the default of 1 bit per pixel. Each X

represents four bits of a row of the bitmap; the characters @ and A

through O are used in this encoding. Thus, there are

4*Width*BitsPerPixel/16 X’s for each row.

MAKEFILE binds *PRINT-ARRAY* to T so that bitmaps print

readably in files. E.g., if the value of FOO is a bitmap, the

command (VARS FOO) dumps something like

(RPAQQ FOO #*(10 10)ADSDKJFDKJH...)

Note that with this new format, bitmaps are readable even inside a

complex list structure. This means you need no longer use the

UGLYVARS command when dumping a list containing bitmaps if

the bitmaps were previously the only "unprintable" part of the list.

Section 25.8 Readtables

(III:25.34)

The input/output syntaxes of Common Lisp and Interlisp differ in a

few significant ways. For example, Common Lisp uses "\" as the

escape character, whereas Interlisp uses "%". Common Lisp input

is case-insensitive (lower-case letters are read as upper-case),

whereas Interlisp is case-sensitive. In Xerox Lisp, these

differences are accommodated by having different readtables for

the two dialects. Which syntax is used for input or output depends

on which readtable is being used (either as an explicit argument to

the read/print function or by being the "current" readtable).

Interlisp readtables have been extended to include features of

Common Lisp syntax. There is a registry of named readtables to

make it easier to choose a readtable. The default Interlisp

readtable has been modified to make it look a little closer to

Common Lisp.

3-45LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Also, Lisp has a new mechanism for maintaining read/print

consistency. This means that even though Koto files may contain

characters that are now "special", such as colon, you need make

no changes to them—the File Manager knows how to load them

correctly. See IRM, Chapter 17, Reader Environments and File

Manager for details of this mechanism.

Differences Between Interlisp and Common Lisp Read Tables

When reading or printing, the readtable dictates the syntax rules

being followed. As in past releases, the readtable indicates which

characters must be escaped when printing a symbol (and *PRINT-
ESCAPE* is true). In addition, in Lyric the readtable specifies such

things as which escape character to use (\ or %) and the package

delimiter to print on package-qualified symbols. The less obvious

rules are detailed below.

Printing numbers. Numbers are always printed in the current print

base (the value of the variable *PRINT-BASE*, or equivalently the

value of (RADIX). Whether to print a radix specifier is determined

by the readtable. In Common Lisp, a radix specifier is printed

exactly when the value of *PRINT-RADIX* is true. The radix

specifier is a suffix decimal point in base 10, or a prefix using # for

other bases. In Interlisp, a radix specifier is printed if the base is

not 10, *PRINT-ESCAPE* is true, and the number is not less than

the print base. The radix specifier is a suffix Q for octal, or a prefix

using # (or | in old Interlisp readtables) for other bases. There is no

decimal radix specifier.

Reading numbers. In Common Lisp, numbers are read in the

current value of *READ-BASE*, and a trailing decimal point is

interpreted as a decimal radix specifier. In Interlisp, numbers are

always read in base 10, and trailing decimal point denotes a

floating-point number.

Case conversion. In a case-insensitive readtable (as Common

Lisp is), the value of *PRINT-CASE* controls how upper-case

symbols are printed, and lower-case letters in symbols are

escaped. In a case-sensitive readtable (as Interlisp is), *PRINT-
CASE* is ignored, so all letters in symbols are printed verbatim.
PRINT-CASE is also ignored by PRIN1, which implicitly uses an

Interlisp readtable.

Ratios. The character slash (/) is interpreted as the ratio marker in

all readtables except old Interlisp readtables (specifically, those

whose COMMONNUMSYNTAX property is NIL). This is so that old

files containing symbols with slashes are not misinterpreted as

ratios. Thus, the characters "1/2" are read in new readtables as the

ratio 1/2, but in old Interlisp readtables as the 3-character symbol

|1/2| (| is the multiple-escape character, see below). Ratios are

printed in old Interlisp readtables in the form |.(/ numerator

denominator).

Packages. Symbols are interned with respect to the current

package (the binding of *PACKAGE*) except in old Interlisp

readtables (specifically, those whose USESILPACKAGE property

is T), where symbols are read with respect to the INTERLISP

package, independent of the binding of *PACKAGE*. Again, this is

a backward-compatibility feature: Interlisp had no package system,

3-46 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/ INTERLISP-D INTEGRATION

so programmers were not confronted with the need to read and

print in a consistent package environment.

Print Level elision. When *PRINT-LEVEL* or *PRINT-LENGTH*
is exceeded, the printing functions denote elided elements and

elided tails by printing "&" and "--" with an Interlisp readtable, or

"#" and "..." with a Common Lisp readtable.

Section 25.8.2 New Readtable Syntax Classes

The following new syntax classes are recognized by GETSYNTAX

and SETSYNTAX:

MULTIPLE-ESCAPE This character inhibits any special interpretation of all characters

(except the single escape character) up until the next occurrence of

the multiple escape character. In Common Lisp and in the new

Interlisp readtables this character is the vertical bar ("|"). For

example, |(a)| is read as the 3-character symbol "(a)"; |x\|y\\z| is

read as the 5 character symbol "x|y\z".

There is no multiple escape character in the old Interlisp

readtables.

PACKAGEDELIM This character separates a package name from the symbol name in

a package-qualified symbol. In Common Lisp and in the new

Interlisp readtables this character is colon (":"). In the old Interlisp

readtables the package delimiter is control-↑ ("↑↑"); it is not

intended to be easily typed, but exists only to have a compatible

way to print package-qualified symbols in obsolete readtables. See

Common Lisp, the Language for details of package specification.

Additional Readtable Properties

Read tables have several additional properties in Xerox Lisp.

These are accessible via the function READTABLEPROP:

(READTABLEPROP RDTBL PROP NEWVALUE) [Function]

Returns the current value of the property PROP of the readtable

RDTBL. In addition, if NEWVALUE is specified, the property’s

value is set to NEWVALUE. The following properties are

recognized:

NAME The name of the readtable (a string, case is ignored). The name is

used for identification when printing the readtable object itself, and

can be given to the function FIND-READTABLE to retrieve a

particular readtable.

CASEINSENSITIVE If true, then unescaped lower-case letters in symbols are read as

upper-case when this readtable is in effect. This property is true by

default in Common Lisp readtables and false in Interlisp readtables.

COMMONLISP If true, then input/output obeys certain Common Lisp rules;

otherwise it obeys Interlisp rules. This is described in more detail in

the section on reading and printing. Setting this property to true

also sets COMMONNUMSYNTAX true and USESILPACKAGE

false.

COMMONNUMSYNTAX If true, then the Common Lisp rules for number parsing are

followed; otherwise the old Interlisp rules are used. This affects the

interpretation of "/" and the floating-point exponent specifiers "d",

3-47LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

"f", "l" and "s". It does not affect the interpretation of decimal point

and *READ-BASE*, which are controlled by the COMMONLISP

property. COMMONNUMSYNTAX is true for Common Lisp

readtables and the new Interlisp readtables; it is false for old

Interlisp readtables.

USESILPACKAGE This is a backward compatibility feature. If USESILPACKAGE is

true, then the Interlisp input/output functions read and print symbols

with respect to the Interlisp package, independent of the current

value of *PACKAGE*. This property is true by default for old

Interlisp readtables and false for others.

The following properties let the print functions know what

characters are being used for certain variable syntax classes so

that they can print objects in a way that will read back correctly.

Note that it is possible for several characters to have the same

syntax on input, but only one of the characters is used for output.

Also note that only the three syntax classes ESCAPE, MULTIPLE-
ESCAPE and PACKAGEDELIM are parameterized for output; the

others (such as LEFTPAREN and STRINGDELIM) are hardwired

—the same character is always used.

ESCAPECHAR This is the character code for the character to use for single

escape. Setting this property also gives the designated character

the syntax ESCAPE in the readtable.

MULTIPLE-ESCAPECHAR This is the character code for the character to use for multiple

escape. Setting this property also gives the designated character

the syntax MULTIPLE-ESCAPE in the readtable.

PACKAGECHAR This is the character code for the package delimiter. Setting this

property also gives the designated character the syntax

PACKAGEDELIM in the readtable.

(FIND-READTABLE NAME) [Function]

Returns the readtable whose name is NAME, which should be a

symbol or string (case is ignored); returns NIL if no such readtable

is registered. Readtables are registered by calling

(READTABLEPROP rdtbl ’NAME name).

(COPYREADTABLE RDTBL) [Function]

COPYREADTABLE has been extended to accept a readtable

name as its RDTBL argument (the old value ORIG could be

considered a special case of this). For example,

(COPYREADTABLE "INTERLISP") returns a copy of the

INTERLISP readtable. COPYREADTABLE preserves all syntax

settings and properties except NAME.

Section 25.8 Predefined Readtables

The following readtables are registered in the Lyric release of Lisp:

INTERLISP This is the "new" Interlisp readtable. It is used by default in the

Interlisp Exec and by the File Manager to write new versions of pre-

existing source files. It thus replaces the old T readtable,

FILERDTBL, CODERDTBL and DEDITRDTBL. It differs from them

in the following ways:

3-48 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/ INTERLISP-D INTEGRATION

| (vertical bar) has syntax MULTIPLE-ESCAPE rather than being used as a

variant of the Common Lisp dispatching # macro character.

is used as the Common Lisp dispatching # macro character. For

example, to type a number in hexadecimal, the syntax is #xnnn

rather than |xnnn.

: (colon) has syntax PACKAGEDELIM.

’ (quote) reads the next expression as (QUOTE expression).

‘ (backquote) are used to read backquoted expressions

 , (comma)

In addition, the Common Lisp syntax for numbers is supported (the

readtable has property COMMUNNUMSYNTAX). For example, the

characters "1/2" denote a ratio, not a symbol. Note, however, that

trailing decimal point still means floating point, rather than forcing a

decimal read base for an integer.

The syntax for quote, backquote, and comma is the same as in

OLD-INTERLISP-T, so you will not see any difference when typing

to an Interlisp Exec. However, the fact that files are also written in

the new INTERLISP readtable means that the prettyprinter is now

able to print quoted and backquoted expressions much more

attractively on files (and to the display as well).

LISP This readtable implements Common Lisp read syntax, exactly as

described in Common Lisp, the Language.

XCL This readtable is the same as LISP, except that the characters with

ASCII codes 1 thru 26 have white-space (SEPRCHAR) syntax.

This readtable is intended for use in File Manager files, so that font

information can be encoded on the file.

The following readtables are provided for backward compatibility.

They are the same as the corresponding readtables in the Koto

release, with the addition of the USESILPACKAGE property.

ORIG This is the same as the ORIG readtable described in the Interlisp-D

Reference Manual. When using a readtable produced by

(COPYREADTABLE ’ORIG), expressions will read and print

exactly the same in Koto and Lyric.

OLD-INTERLISP-FILE This is the same as the FILERDTBL described in the Interlisp-D

Reference Manual. This readtable is used to read source files

produced in the Koto release. Note that in Lyric, FILERDTBL is no

longer used when reading or writing new files; see the section on

reader environments.

OLD-INTERLISP-T This is the same as the T readtable described in the Interlisp-D

Reference Manual.

If you wish to change the syntax used by a standard readtable, it is

recommended instead that you copy the readtable, give it a

distinguished name, and make the change in the new readtable.

This will reduce the likelihood that you will try to read another user’s

files in an incompatible readtable, or that another user will fail

reading yours. See chpater 17, Reader Environments and the File

Manager, for more details.

3-49LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Koto Compatibility Considerations

In order to consistently read a data structure that you have

previously printed, it is important that READ and PRINT both use

the same readtable and package. Code that calls READ or PRINT

without explicitly specifying a readtable (via the RDTBL argument

or by doing a SETREADTABLE) is thus in some danger of reading

and printing inconsistently.

Specifying Readtables and Packages

In Koto, the "primary" (NIL) readtable was not significantly different

from the other Interlisp readtables, and users tended not to make

significant modifications to the primary readtable anyway. As a

result, it was easy to write code that was not careful about

readtables and get away with it. In Lyric, however, there are

significant differences among commonly used readtables. Thus, if

code using the default readtable called PRINT under, say, the

Common Lisp Executive and tried to READ the expression back

while running under an Interlisp Executive, it might very well get

inconsistent results.

Lyric also introduces the extra complication of the default package,

which is the other important parameter affecting the behavior of

READ and PRINT.

Programmers are thus advised to fix any code that uses READ and

PRINT as a way of storing and retrieving Lisp expressions to be

sure to specify a readtable and package environment. For new

code in Lyric, this can be done by binding the special variables

READTABLE and *PACKAGE*. If it is necessary to write code

that works in both Koto and Lyric, the programmer should pass an

explicit readtable to all READ and PRINT functions, or set the

primary readtable using (RESETFORM (SETREADTABLE rdtbl) --

). If the readtable chosen is either FILERDTBL or one derived as a

copy of ORIG, then READ and PRINT will automatically use the

INTERLISP package in Lyric, thereby avoiding any need to specify

a binding for *PACKAGE*.

The T Readtable

An additional possible incompatibility exists with regard to the Koto

T readtable: The T readtable was "the readtable used when

reading from the terminal". In Lyric, the T readtable is synonymous

with NIL, and all Executives bind *READTABLE* to the appropriate

value for the Exec. This is unlikely to be a major source of

incompatibility, as few programs depend on printing something in

the T readtable in a way that needs to read back consistently.

PQUOTE Printed Files

In Lyric, the prettyprinter automatically prints quoted and

backquoted expressions attractively. Hence, the PQUOTE

Lispusers module is now obsolete. However, if you have written

files in the past with the PQUOTE module loaded into your

environment, you need to do the following in Lyric in order to load

those files:

(SETSYNTAX (CHARCODE "’") ’(MACRO FIRST READQUOTE)
FILERDTBL)

3-50 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/ INTERLISP-D INTEGRATION

You can then load the old files. New files produced in Lyric by

MAKEFILE will automatically be loadable, so you need only

perform the SETSYNTAX change as long as you still have old files

written with PQUOTE. Remember, of course, that as long as the

SETSYNTAX is in effect (as with the old PQUOTE module), if you

read old files that were written without PQUOTE you may read

them incorrectly.

Back-Quote Facility

The back-quote facility now fully conforms with Common Lisp the

Language. This means some cases of nested back-quote now

work correctly. Back-quote forms are also more attractively

displayed by the prettyprinter. Users should beware, however, that

the back-quote facility does not attempt to create fresh list

structures unless it is necessary to do so. Thus for example,

’(1 2 3)

is equivalent to

’(1 2 3)

not

(LIST 1 2 3)

If you need to avoid sharing structure you should explicitly use

LIST, or COPY the output of the back-quote form.

Chapter 28 Windows and Menus

Section 28.5.1 Menu Fields

(III:28.38)

With the Medley release, multi-column menus can have rollout

submenus.

3-51LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

[This page intentionally left blank]

