
3-7LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

3-8 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

VOLUME II—ENVIRONMENT

Chapter 13 Interlisp Executive

[This chapter of the Interlisp-D Reference Manual has been

renamed Chapter 13, Executives.]

Lisp has a new kind of Executive (or Exec), designed for use in an

environment with both Interlisp and Common Lisp. This executive

is available in three standard modes, distinguished by their default

settings for package and readtable:

XCL New Exec. Uses XCL readtable, XCL-USER package

CL New Exec. Uses LISP readtable, USER package

IL New Exec. Uses INTERLISP readtable, INTERLISP package

In addition, the old Interlisp executive, the "Programmer’s

Assistant", is still available in this release for the convenience of

Koto users:

OLD-INTERLISP Old "Programmer’s Assistant" Exec. Uses OLD-INTERLISP-T

readtable, INTERLISP package. It is likely that this executive will

not be supported in future releases.

When Lisp starts, it is running a single executive, the XCL Exec.

You can spawn additional executives by selecting EXEC from the

background menu. The type of an executive is indicated in the title

of its window; e.g., the initial executive has title "Exec (XCL)". Each

executive runs in its own process; when you are finished with an

executive, you can simply close its window, and the process is

killed.

The new executive is modeled, somewhat, on the old

"Programmer’s Assistant" executive and, to a first approximation,

you can type to it just as you did in past releases. You should note,

however, that the default executive (XCL) expects Common Lisp

input syntax, and reads symbols relative to the XCL-USER

package. This means that to type Interlisp symbols, you must

prefix the symbol with the characters "IL:" (in upper or lower case).

And even in the new IL executive, the readtable being used is the

new INTERLISP readtable, in which the characters colon (:),

vertical bar (|) and hash (#) all have different meanings than in

Koto.

The OLD-INTERLISP exec, with one exception, uses exactly the

same input syntax as in Koto; this means in particular that colon

cannot be used to type package-qualfied symbols, since colon is an

ordinary character there. The one exception is that there is a

package delimiter character in the OLD-INTERLISP readtable,

should you have a need to use it—Control-↑, which usually echoes

as "↑↑", though it may appear as a black rectangle in some fonts.

The new executive does differ from the old one in several respects,

especially in terms of its programmatic interface. Complete details

3-9LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

of the new executive can be found in Appendix A. The Exec.

Some of the important differences are:

• Executives are numbered

Executives, other than the first one, are labeled with a distinct

number. This number appears in the exec window’s title, and also

in its prompt, next to the event number. The OLD-INTERLISP

executive does not include this exec number.

• Event number allocation

The numbers for events are allocated at the time the prompt for the

event is printed, but all execs still share a common event number

space and history list. This means that ?? shows all events that

have occurred in any executive, though not necessarily in the order

in which the events actually occurred (since it is the order in which

the event numbers were allocated). Events for which the type-in

has not been completed are labeled "<in progress>" in the ??

listing. In the old executive, event numbers are not allocated until

type-in is complete, which means that the number printed next to

the prompt is not necessarily the number associated with the event,

in the case that there has been activity in other executives.

In the new executive, relative event specifications are local to the

exec; e.g., -1 refers to the most recent event in that specific exec.

In the old executive, -1 referred to the immediately preceding event

in any executive.

• New facility for commands

The old Executive has commands based on LISPXMACROS. The

new Executive has its own command facility,

XCL:DEFCOMMAND, which allows commands to be named

without regard to package, and to be written with familiar Common

Lisp style of argument list.

• Commands are typed without parentheses

In the old executive, a command could be typed with or without

enclosing parentheses. In the new executive, a parenthesized form

is always interpreted as an EVAL-style input, never a command.

• SETQ does not interact with the File Manager

In the Koto release, when you typed in the Exec

(SETQ FOO some-new-value-for-FOO)

the executive responded (FOO reset), and the file package was

told that FOO’s value changed. Any files on which FOO appeared

as a variable would then be marked as needing to be cleaned up.

If FOO appeared on no file, you’d be prompted to put it on one

when you ran (FILES?).

This is still the case in the old executive. However, it is no longer

the case in the new executive. If you are setting a variable that is

significant to a program and you want to save it on a file, you

should use the Common Lisp macro CL:DEFPARAMETER instead

of SETQ. This will give the symbol a definition of type VARIABLES

(rather than VARS), and it will be noticed by the File manager. If

you want to change the value of the variable, you must either use

3-10 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

CL:DEFPARAMETER again, or edit the variable using ED (not

DV).

• Programmatic interface completely different

As a first approximation, all the functions and variables in IRM

Sections 13.3 (except the LISPXPRINT family) and 13.6 apply only

to the Old Interlisp Executive, unless specified otherwise in

Appendix A. In particular, the variables PROMPT#FLG,

PROMTPCHARFORMS, SYSPRETTYFLG,
 HISTORYSAVEFORMS, RESETFORMS, ARCHIVEFN,

ARCHIVEFLG, LISPXUSERFN, LISPXMACROS,

LISPXHISTORYMACROS and READBUF are not used by the new

Exec. The function USEREXEC invokes an old-style Executive, but

uses the package and readtable of its caller. The function

LISPXUNREAD has no effect on the new Exec. Callers of

LISPXEVAL are encouraged to use EXEC-EVAL instead.

Some subsystems still use the old-style Executive—in particular,

the tty strucure editor.

Chapter 14 Errors and Breaks

Lisp extends the Interlisp break package to support multiple values

and the Common Lisp lambda syntax. Interlisp errors have been

converted to Common Lisp conditions.

Note that Sections 14.2 through 14.6 in the Interlisp-D Reference

Manual have been replaced by new Debugger information (see

Common Lisp Implementation Notes).

Section 14.3 Break Commands

(II:14.6)

The !EVAL debugger command no longer exists.

(II:14.10-11)

The Break Commands = and -> are no longer supported.

Section 14.6 Creating Breaks with BREAK1

While the function BREAK1 still exists, broken and traced functions

are no longer redefined in terms of it. More primitive constructs are

used.

Section 14.7 Signalling Errors

Interlisp errors now use the new XCL error system. Most of the

functions still exist for compatibility with existing Interlisp code, but

the underlying machinery is different. There are some incompatible

differences, however, especially with respect to error numbers.

3-11LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

The old Interlisp error system had a set of registered error numbers

for well known error conditions, and all other errors were identified

by a string (an error message). In the new Lisp error system, all

errors are handled by signalling an object of type

XCL:CONDITION. The mapping from Interlisp error numbers to

Lisp conditions is given below in Section 14.10.

Since one cannot in general map a condition object to an Interlisp

error number, the function ERRORN no longer exists. The

equivalent functionality exists by examining the special variable

LAST-CONDITION, whose value is the condition object most

recently signaled.

(ERRORX ERXM) calls CL:ERROR after first converting ERXM

into a condition in the following way: If ERXM is NIL, the value of

LAST-CONDITION is used; if ERXM is an Interlisp error

descriptor, it is first converted to a condition; finally, if ERXM is

already a condition, it is passed along unchanged. ERRORX also

sets up a proceed case for XCL:PROCEED, which will attempt to

re-evaluate the caller of ERRORX, much as OK did in the old

Interlisp break package.

ERROR, HELP, SHOULDNT, RESET, ERRORMESS,

ERRORMESS1, and ERRORSTRING work as before. All output is

directed to *ERROR-OUTPUT*, initially the terminal.

ERROR! is equivalent to the new error system’s XCL:ABORT

proceed function, except that if no ERRORSET or XCL:CATCH-
ABORT is found, it unwinds all the way to the top of the process.

SETERRORN converts its arguments into a condition, then sets the

value of *LAST-CONDITION* to the result.

 Section 14.8 Catching Errors

ERRORSET, ERSETQ and NLSETQ have been reimplemented in

terms of the new error system , but their behavior is essentially the

same as before. NLSETQ catches all errors (conditions of type
CL:ERROR and its descendants), and sets up a proceed case for
XCL:ABORT so that ERROR! will return from it. ERSETQ also

sets up a proceed case for XCL:ABORT, though it does not catch

errors.

One consequence of the new implementation is that there are no

longer frames named ERRORSET on the stack; programs that

explicitly searched for such frames will have to be changed.

ERRORTYPELIST is no longer supported. The equivalent

functionality is provided by default handlers. Although condition

handlers provide a more powerful mechanism for programmatically

responding to an error condition, old ERRORTYPELST entries

generally cannot be translated directly. Condition handlers that

want to resume a computation (rather than, say, abort from a well-

know stack location) generally require the cooperation of a proceed

case in the signalling code; there is no easy way to provide a

substitute value for the "culprit" to be re-evaluated in a general way.

One important difference between ERRORTYPELIST and condition

handlers is their behavior with respect to NLSETQ. In Koto, the

relevant error handler on ERRORTYPELST would be tried, even

3-12 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

for errors occurring underneath an NLSETQ. In Lyric, the NLSETQ

traps all errors before the default condition handlers can see the

error. This means, for example, that the behavior of (NLSETQ
(OPENSTREAM --)) is now different if the OPENSTREAM causes

a file not found error—in Koto, the system would search

DIRECTORIES for the file; in Lyric, the NLSETQ returns NIL

immediately without searching, since the default handler for

XCL:FILE-NOT-FOUND is not invoked.

Section 14.9 Changing and Restoring System State

The special forms RESETLST, RESETSAVE, RESETVAR,

RESETVARS and RESETFORM still exist, but are implemented by

a new mechanism that also supports Common Lisp’s CL:UNWIND-
PROTECT. Common Lisp’s CL:THROW and (in most cases)

Interlisp’s RETFROM and related control transfer constructs cause

the cleanup forms of both CL:UNWIND-PROTECT and RESETLST

(etc) to be performed. This is discussed in more detail in the notes

for Chapter 11, the stack.

Section 14.10 Error List

Most of the Interlisp errors are mapped into condition types in Lisp.

Some are no longer supported. Following is the list of error type

mappings. The first name is the condition type that the error

descriptor turns into. If there is a second name, it is the slot whose

value is set to CADR of the error descriptor. Any additional pairs of

items are the values of other slots set by the mapping. Attempting

to use an unsupported error type number will result in a simple

error to that effect.

0 Obsolete

1 Obsolete

2 STACK-OVERFLOW

3 ILLEGAL-RETURN

4 XCL:SIMPLE-TYPE-ERROR CULPRIT :EXPECTED-TYPE ’LIST

5 XCL:SIMPLE-DEVICE-ERROR MESSAGE

6 XCL:ATTEMPT-TO-CHANGE-CONSTANT

7 XCL:ATTEMPT-TO-RPLAC-NIL MESSAGE

8 ILLEGAL-GO TAG

9 XCL:FILE-WONT-OPEN PATHNAME

10 XCL:SIMPLE-TYPE-ERROR CULPRIT :EXPECTED-TYPE
’CL:NUMBER

11 XCL:SYMBOL-NAME-TOO-LONG

12 XCL:SYMBOL-HT-FULL

13 XCL:STREAM-NOT-OPEN STREAM

14 XCL:SIMPLE-TYPE-ERROR CULPRIT :EXPECTED-TYPE
’CL:SYMBOL

15 Obsolete

16 END-OF-FILE STREAM

3-13LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

17 INTERLISP-ERROR MESSAGE

18 Not supported (control-B interrupt)

19 ILLEGAL-STACK-ARG ARG

20 Obsolete

21 XCL:ARRAY-SPACE-FULL

22 XCL:FS-RESOURCES-EXCEEDED

23 XCL:FILE-NOT-FOUND PATHNAME

24 Obsolete

25 INVALID-ARGUMENT-LIST ARGUMENT

26 XCL:HASH-TABLE-FULL TABLE

27 INVALID-ARGUMENT-LIST ARGUMENT

28 XCL:SIMPLE-TYPE-ERROR CULPRIT :EXPECTED-TYPE
’ARRAYP

29 Obsolete

30 STACK-POINTER-RELEASED NAME

31 XCL:STORAGE-EXHAUSTED

32 Not supported (attempt to use item of incorrect type)

33 Not supported (illegal data type number)

34 XCL:DATA-TYPES-EXHAUSTED

35 XCL:ATTEMPT-TO-CHANGE-CONSTANT

36 Obsolete

37 Obsolete

38 XCL:SIMPLE-TYPE-ERROR CULPRIT :EXPECTED-TYPE
’READTABLEP

39 XCL:SIMPLE-TYPE-ERROR CULPRIT :EXPECTED-TYPE
’TERMTABLEP

40 Obsolete

41 XCL:FS-PROTECTION-VIOLATION

42 XCL:INVALID-PATHNAME PATHNAME

43 Not supported (user break)

44 UNBOUND-VARIABLE NAME

45 UNDEFINED-CAR-OF-FORM FUNCTION

46 UNDEFINED-FUNCTION-IN-APPLY

47 XCL:CONTROL-E-INTERRUPT

48 XCL:FLOATING-UNDERFLOW

49 XCL:FLOATING-OVERFLOW

50 Not supported (integer overflow)

51 XCL:SIMPLE-TYPE-ERROR CULPRIT :EXPECTED-TYPE
’CL:HASH-TABLE

52 TOO-MANY-ARGUMENTS CALLEE :MAXIMUM CL:CALL-
ARGUMENTS-LIMIT

3-14 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Note that there are many other condition types in Lisp; see the

error system documentation in the Common Lisp Implementation

Notes for details.

Chapter 15 Breaking Functions and Debugging

In Lyric the uses of BREAK, TRACE, and ADVISE are unchanged,

from the user’s point of view, but the internals of their

implementation are quite different.

For complete documentation on the new implementation of

breaking, tracing and advising, see the Common Lisp

Implementation Notes, Section 25.3.

In particular, you should note the following differences:

• The variable BRKINFOLST no longer exists and the format

of the value of the variable BROKENFNS has changed. In

addition, the BRKINFO property is no longer used.

• BREAK and TRACE no longer work on CLISP words.

• The BREAKIN and UNBREAKIN functions no longer exist.

No comparable facility exists in Lisp. The user can

manually insert calls to the Common Lisp function

CL:BREAK in order to create a breakpoint at that point in

the function.

Please note the following additional changes to breaking functions:

Section 15.1 Breaking Functions and Debugging

(BREAK0 FN WHEN COMS — —) [Function]

The functio BREAK0 now works when applied to an undefined

 function. This allows you to use the breaking facility to create

"stubs" that generate a breakpoint when called. You can then

examine the arguments passed and use the RETURN command in

the debugger to return the proper result(s).

The "break commands" facility (the COMS argument) is no longer

supported. BREAK0 now signals an error when supplied with a

non-NIL third argument. If you need finer control over the

functioning of breakpoints you are directed to the ADVISE facility; it

offers complete control of how and when the given function is

evaluated.

Passing a non-atomic argument in the form (FN1 IN FN2) as the

first argument to BREAK0 still has the effect of creating a

breakpoint wherever FN2 calls FN1. However, it no longer creates

a function named FN1-IN-FN2 to do so. In addition, the format of

the value of the NAMESCHANGED property has changed and the

ALIAS property is no longer used.

3-15LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

(TRACE X) [Function]

TRACE is no longer a special case of BREAK, though the

functions UNBREAK and REBREAK continue to work on traced

functions.

In addition, the function TRACE no longer calls BREAK0 in order to

do its job. Also, non-atomic arguments to TRACE no longer specify

forms the user wishes to see in the tracing output.

(UNBREAK X) [Function]

The function UNBREAK is no longer implemented in terms of

UNBREAK0, although that function continues to exist.

Section 15.2 Advising

The implementation of advising has been completely reworked.

While the semantics implied by the code shown in Section 15.2.1 of

the Interlisp-D Reference Manual is still supported, the details are

quite different. In particular, it is now possible to advise functions

that return multiple values and for AFTER-style advice to access

those values. Also, all advice is now compiled, rather than

interpreted. The advising facility no longer makes use of the

special forms ADV-PROG, ADV-RETURN, and ADV-SETQ.

You should also note the following changes to the advise facility:

• The editing of advice has chnged slightly. In previous

 releases, the advice and original function-body were edited

simultaneously. In Lyric, they can only be edited separately.

When you finish editing the advice for a function, that

function is automatically re-advised using the new advice.

• The variable ADVINFOLST no longer exists and the format

of the value of the variable ADVISEDFNS has changed. In

addition, the properties ADVICE and READVICE are no

longer used, except in the handling of advice saved on files

from previous releases. Advice saved in Lyric does not use

the READVICE property.

• The function ADVISEDUMP no longer exists.

• Advice saved on files in previous releases can, in general,

be loaded into the Lyric system compatibly. A known

exception is the case in which a list of the form (FN1 IN FN2)
was given to the ADVICE or ADVISE file package

commands. When READVISE is called on such a name, the

old-style advice, on the READVICE property of the symbol

FN1-IN-FN2, will not be found. This will eventually lead to

an XCL:ATTEMPT-TO-RPLAC-NIL error. The user should

evaluate the form

(RETFROM ’READVISE1)
in the debugger to proceed from the error and later evaluate

(READVISE FN1-IN-FN2)
by hand to install the advice.

3-16 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

• The ADVICE and ADVISE File Manager commands now

accept three kinds of arguments:

a symbol, naming an advised function,

a list in the form (FN1 :IN FN2), and

a symbol of the form FN1-IN-FN2.

Arguments of the form (FN1 IN FN2) are not acceptable any

longer. Arguments of the form FN1-IN-FN2 should be

converted into the equivalent form (FN1 :IN FN2).

(ADVISE WHO WHEN WHERE WHAT) [Function]

In the Lyric release of Lisp, ADVISE has some changes in the way

arguments are treated and the possible values for those

arguments. Most notably:

• In earlier releases, you could call ADVISE with only one

argument, the name of a function. In this case, AVISE "set

 up" the named function for advising, but installed no advice.

This usage is no longer supported.

• Previously, an undocumented value of BIND was accepted

for the WHEN argument to ADVISE. This kind of advice is

no longer supported. It can be adequately simulated using

AROUND advice.

In addition, advising Common Lisp functions works somewhat

differently with respect to a function’s arguments. The argumets

 are not available by name. Instead, the variable XCL:ARGLIST is

bound to a list of the values passed to the function and may be

changed to affect what will be passed on.

As with the breaking facility (see above), ADVISE no longer creates

a function named FN1-IN-FN2 as a part of advising (FN1 IN FN2).

Chapter 16 List Structure Editor

The list structure editor, DEdit, is not part of the Lisp environment.

It is now a Lisp Library Module. Chapter 16 has been renamed

Structure Editor.

SEdit, the new Lisp editor, replaced DEdit in the Lyric release. The

description of SEdit may be found in Appendix B of this volume.

The commands used to invoke both SEdit and DEdit are the same.

Following is a description of the interface to the Lisp editor.

3-17LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Switching Between Editors

If you have both SEdit and DEdit loaded, you can switch between

them by calling: (EDITMODE ’EDITORNAME) where

EDITORNAME is one of the symbols SEdit or DEdit.

Packages

The ED editor interface accepts TYPE information from the

Interlisp or Common Lisp packages.

Starting a Lisp Editor

In the XCL environment, calling ED with a pathname will start the

editor on the coms of the file (as if DC had been called).

(ED NAME &OPTIONAL OPTIONS) [Function]

This function starts the Lisp editor. ED is the default interface to

the editor. SEdit is the default Lisp editor. The same symbol, ED,
is exported in both the IL and CL packages.

NAME is the name of any File Manager object.

OPTIONS is either a single symbol or a list of symbols, each of

which is either a File Manager type or one or more of the keywords

:DISPLAY, :DONTWAIT, :CURRENT, :COMPILE-ON-
COMPLETION, :CLOSE-ON-COMPLETION, or :NEW. If exactly

one File Manager type is given, ED tries to edit that type of

definition for NAME. If more than one type is given in OPTIONS,
ED will determine for which of them NAME has a definition. If a

definition exists for more than one of the types, ED gives you a

choice of which one to edit. If no File Manager types are given, ED

treats OPTIONS as a list of all of the existing types; thus you are

given a choice of all of the existing definitions of NAME.

The variable FILEPKGTYPES contains a complete list of the

currently-known manager types.

If the keyword :DISPLAY is included in OPTIONS, ED uses menus

for any prompting, (e.g., to choose one of several possible

definitions to edit). If :DISPLAY is not included, ED prints its

queries to and reads the user’s replies from *QUERY-IO* (usually

the Exec in which you are typing). Thus all of the following are

correct ways to call the editor:

(ED ’NAME :DISPLAY)

(ED ’NAME ’FUNCTIONS)

(ED ’NAME ’(:DISPLAY))

(ED ’NAME ’(FUNCTIONS :DISPLAY))

(ED ’NAME ’(FUNCTIONS VARIABLES :DISPLAY))

The other keywords are interpreted as follows:

3-18 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

:CURRENT

This is a new option with Medley that causes ED to call TYPESOF

with SOURCE=CURRENT. This prevents TYPESOF from

searching FILECOMS and from looking in WHERE-IS databases.

The CURRENT option looks only for definitions that are currently

loaded. When you know that the definition is loaded, use of the

CURRENT option results in ED being significantly faster.

:DONTWAIT

Lets the edit interface return right away, rather than waiting for the

edit to be complete. DF, DV, DC, and DP specify this option now,

so editing from the exec will not cause the exec to wait.

:NEW

Lets you install a new definition for the name to be edited. You will

be asked what type of dummy definition you wish to install based

on which file manager types were included in OPTIONS.

:COMPILE-ON-COMPLETION

This option specifies that the definition being edited should be
compiled upon completion regardless of the completion command
used.

:CLOSE-ON-COMPLETION

Tells the editor that it must close the editor window after the first

completion. So in SEdit, CONTROL-X will close the window;

shrinking the window is not allowed. Editor windows opened by the

exec command FIX specify this option.

If NAME does not have a definition of any of the given types, ED

can create a dummy definition of any of those types. If :DISPLAY

is provided in OPTIONS, ED will pop-up the following menu asking

you which type of definition to install. Select the template for the

type of definition you wish to create from the DEFN menus and

submenus:

New kinds of dummy definitions can be added to the system

through the use of the :PROTOTYPE option to

XCL:DEFDEFINER.

3-19LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Mapping the Old Edit Interface to ED

The old functions for starting the Lisp editor (DF, DV, DP, and DC)

have been reimplemented so that they work with Common Lisp.

The old edit commands map to the new editor function (ED) as

follows:

DF NAME ⇒ (ED ’NAME ’(FUNCTIONS FNS :DONTWAIT))

DV NAME ⇒ (ED ’NAME ’(VARIABLES VARS :DONTWAIT))

DP NAME ⇒ (ED ’NAME ’(PROPERTY-LIST :DONTWAIT))

DP NAME MYPROP ⇒ (ED ’(NAME MYPROP) ’(PROPS :DONTWAIT))

DC NAME ⇒ (ED ’NAME ’(FILES :DONTWAIT))

Thus, for example, when DF is invoked it looks first for Common

Lisp FUNCTIONS and then for Interlisp FNS. DV, DP and DC

operate in an analogous fashion.

Editing Values Directly

The TYPE you specify for the object you want to edit determines

how that object is edited, i.e. by DEFINITION or VALUE. Normally

you want to edit the DEFINITION (this is the default). For example,

suppose FOO is defined as a variable; to start the editor on the

DEFINITION of FOO, use the form:

(ED ’FOO) or (ED ’FOO ’VARIABLES)

There may be times when you do not have access to the

DEFINITION of an object that you need to edit. This can occur

when you do not have the source code loaded. You can edit its

VALUE directly using the form:

FOR VARIABLES: ⇒ (ED ’NAME ’IL:VARS)

FOR FUNCTIONS: ⇒ (ED ’NAME ’IL:FNS)

By starting the editor on the VALUE of an object, you can change

its value without changing its definition. (AR 8971)

To start the editor on the VALUE of FOO, for example, use the

form:

(ED ’FOO ’VARS)

EXAMPLE:

When you load a compiled file, the DEFINITION of an object is not

loaded. Only the VALUE is loaded. The compiler does not store

the defining forms for objects. Suppose you have compiled code

for a system file loaded, but you do not have access to the

sources that contain the DEFINITIONS, and you need to change

the value of a system variable, say NETWORKLOGINFO. This

variable has a defining form and the system knows this, but the

form is not loaded and is not available. You can edit the VALUE of

the variable directly using:

(ED ’NETWORKLOGINFO ’IL:VARS)

An editor window opens displaying the VALUE of

NETWORKLOGINFO:

3-20 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Section 16.18 Editor Functions

(II:16.74)

The function FINDCALLERS has the following limitations in Lisp:

1. FINDCALLERS only identifies by name the occurrences inside

of Interlisp FNS, not Common Lisp FUNCTIONS.

2. Because FINDCALLERS uses a textual search, it may report

more occurrences of the specified ATOMS than there actually are,

if the file contains symbols by the same name in another package,

or symbols with the same p-name but different alphabetic case.

EDITCALLERS still edits only the actual occurrences, since it

reads the functions and operates on the real Lisp structure, not its

printed representation.

Chapter 17 File Package

The Interlisp-D File Package has been renamed the File Manager.

Its operation is unchanged; however, it has been extended to

manipulate, load and save Common Lisp functions, variables, etc.

It also allows specification of the reader environment (package and

readtable) to use when writing and reading a file, solving the

problem of compatibility between old and new (Common Lisp)

syntax.

Note that although source files from earlier releases can be loaded

into Lyric, files produced by the File Manager in the Lyric release

cannot be loaded into previous releases. This is true for several

reasons, the most important being that previous releases did not

have packages, so symbols cannot be read back consistently.

3-21LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

The new File Manager includes several new types to deal with the

various definition forms supported in Xerox Common Lisp. The

following table associates each new type with the forms that

produce definitions of that type:

FUNCTIONS CL:DEFUN, CL:DEFMACRO, CL:DEFINE-MODIFY-MACRO,
XCL:DEFINLINE, XCL:DEFDEFINER, XCL:DEFINE-PROCEED-
FUNCTION.

VARIABLES CL:DEFCONSTANT, CL:DEFVAR, CL:DEFPARAMETER,
XCL:DEFGLOBALVAR, XCL:DEFGLOBALPARAMETER

STRUCTURES CL:DEFSTRUCT, XCL:DEFINE-CONDITION

TYPES CL:DEFTYPE

SETFS CL:DEFSETF, CL:DEFINE-SETF-METHOD

DEFINE-TYPES XCL:DEF-DEFINE-TYPE

OPTIMIZERS XCL:DEFOPTIMIZER

COMMANDS XCL:DEFCOMMAND

Note that the types listed above, as well as all the old File Manager

types, are symbols in the INTERLISP package. In addition, the

"filecoms" variable of a file and its rootname are also both in the

INTERLISP package. You should be careful when typing to a

Common Lisp exec to qualify all such symbols with the prefix IL:;
e.g.,

3>(setq il:foocoms ’((il:functions bar) (il:prop il:filetype il:foo)))

to indicate you want the function BAR (in the current package) to

live on a file with rootname FOO, and also that FOO’s FILETYPE

property should be saved.

Reader Environments and the File Manager

(II:17.1)

In order for READ to correctly read back the same expression that
PRINT printed, it is necessary that both operations be performed in

the same reader environment, i.e., the collection of parameters that

affect the way the reader interprets the characters appearing on the

input stream. In previous releases of Interlisp there was, for all

practical purposes, a single such environment, defined entirely by

the readtable FILERDTBL. In the Lyric release of Lisp there are

two significantly different readtables in which to read (Common Lisp

and Interlisp). In addition, there are more parameters than just the

readtable that can potentially affect READ: the current package

and the read base (the bindings of *PACKAGE* and *READ-
BASE*).

To handle this diversity, a new type of object is introduced, the

READER-ENVIRONMENT, consisting of a readtable, a package,

and a read/print base. Every file produced by the File Manager has

a header at the beginning specifying the reader environment for

that file. MAKEFILE and the compiler produce this header, while
LOAD, LOADFNS, and other file-reading functions read the header

in order to set their reading environment correctly. Files written in

older releases of Lisp lack this header and are interpreted as

3-22 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

having been written in the environment consisting of the readtable

FILERDTBL and the package INTERLISP. Thus, you need take no

special action to be able to load Koto source files into Lyric;

characters that are "special" in Common Lisp, such as colon, semi-

colon and hash, are interpreted as the "ordinary" characters they

were in Koto.

The File Manager’s reader environments are specified as a

property list of alternating keywords and values of the form

(:READTABLE readtable :PACKAGE package :BASE base). The
:BASE pair is optional and defaults to 10. The values for readtable

and package should either be strings naming a readtable and

package, or expressions that can be evaluated to produce a

readtable and package. In the former case, the readtable or

package must be one that already exists in a virgin Lisp sysout (or

at least in any Lisp image in which you might attempt any operation

that reads the file). If an expression is used, care should be

exercised that the expression can be evaluated in an environment

where no packages or readtables, other than the documented

ones, are presumed to exist. For hints and guidelines on writing

the package expression for files that create or use their own private

packages, please see Chapter 11 of the Common Lisp

Implementation Notes.

When MAKEFILE is writing a source file, it uses the following

algorithm to determine the reading environment for the new file:

1. If the root name for the file has the property MAKEFILE-
ENVIRONMENT, the property’s value is used. It should be in

the form described above. Note that if you want the file always

to be written in this environment, you should save the
MAKEFILE-ENVIRONMENT property itself on the file, using a

(PROP MAKEFILE-ENVIRONMENT file) command in the

filecoms.

2. If a previous version of the file exists, MAKEFILE uses the

previous version’s environment. MAKEFILE does this even

when given option NEW or the previous version is no longer

accessible, assuming it still has the previous version’s

environment in its cache. If the previous version was written in

an older release, and hence has no explicit reader

environment, MAKEFILE uses the environment (:READTABLE
"INTERLISP" :PACKAGE "INTERLISP" :BASE 10).

3. If no previous version exists (this is a new file), MAKEFILE

uses the value of *DEFAULT-MAKEFILE-ENVIRONMENT*,
initially (:READTABLE "XCL" :PACKAGE "INTERLISP"
:BASE 10).

Note that changing the value of *DEFAULT-MAKEFILE-
ENVIRONMENT* only affects new files. If you decide you don’t like

the environment in which an existing file is written, you must give

the file a MAKEFILE-ENVIRONMENT property to override any

prior default.

Since the XCL readtable is case-insensitive, you should avoid using

it for files that contain many mixed-case symbols or old-style

Interlisp comments, as these will be printed with many escape

3-23LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

delimiters. This is why the default for reprinted Koto sources is the

INTERLISP readtable.

The readtable named LISP (the pure Common Lisp readtable)

should ordinarily not be used as part of a MAKEFILE environment.

It exists solely for the use of "pure" Common Lisp (as in the CL

Exec), and thus has no provision for font escapes (inserted by the

Lisp prettyprinter) to be treated as whitespace. Most users will

want to use either XCL or INTERLISP as the readtable for files.

If the environment for the new version of the file differs from that of

the previous version, MAKEFILE copies unchanged FNS

definitions by actually reading from the old file, rather than just

copying characters as it otherwise would. Similarly, when

RECOMPILE or BRECOMPILE attempt to recompile a file for

which the previous compiled version’s reader environment is

different, they must compile afresh all the functions on the file, i.e.,

they behave like TCOMPL or BCOMPL.

Modifying Standard Readtables

In the past, programmers have been periodically tempted to change

standard readtables, such as T and FILERDTBL, typically by

adding macros to read certain objects in a convenient way. For

example, the PQUOTE LispUsers module defined single quote as a

macro in FILERDTBL. Unfortunately, changing a standard

readtable means that unless you are very careful, you cannot read

other users’ files that were not written with your change, and they

cannot read your files without obtaining your macro. Furthermore,

the effects are often subtle. Rather than breaking, the system

merely reads the file incorrectly. For example, reading a file written

with PQUOTE in an environment lacking PQUOTE produces many

symbols with a single quote packed on the front.

This confusion can be avoided with MAKEFILE reader

environments. To add your own special macro:

1. Copy some standard readtable; e.g., (COPYRDTBL

"INTERLISP").

2. Give it a distinguished name of its own, by using

(READTABLEPROP rdtbl ’NAME "yourname").

3. Make your change in the copied readtable.

4. Use your new private readtable to write your files: use its name

("yourname") in the MAKEFILE-ENVIRONMENT property of

selected files and/or change *DEFAULT-MAKEFILE-
ENVIRONMENT* to affect all your new files.

5. Make sure to save your new readtable. It is usually most

convenient to include the code to create it (steps 1-3) in your

system initialization, but you could even write a self-contained

expression to use in a single file’s MAKEFILE-ENVIRONMENT

property.

With this strategy, your system will read all files in the proper

environment—your own files with your private readtable and other

users’ files in their environments, including the standard

environments, which you have carefully avoided polluting. If

3-24 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

another user tries to load one of your files into an environment that

doesn’t know about your private readtable, LOAD will give an error

immediately (readtable not found), rather than loading the file

quietly but incorrectly.

Programmer’s Interface to Reader Environments

The following function and macro are available for programmers to

use. Note that reader environments only control the parameters

that determine read/print consistency. There are other parameters,

such as *PRINT-CASE*, that affect the appearance of the output

without affecting its ability to be read. Thus, reader environments

are not sufficient to handle problems of, for example, repainting

expressions on the display in exactly the same total environment in

which they were first written.

(MAKE-READER-ENVIRONMENT PACKAGE READTABLE BASE) [Function]

Creates a READER-ENVIRONMENT object with the indicated

components. The arguments must be valid values for the variables
PACKAGE, *READTABLE* and *PRINT-BASE*; names are not

sufficient. If any of the arguments is NIL, the current value of the

corresponding variable is used. Thus (MAKE-READER-
ENVIRONMENT) returns an object that captures the current

environment.

(WITH-READER-ENVIRONMENT ENVIRONMENT . FORMS) [Macro]

Evaluates each of the FORMS with *PACKAGE*, *READTABLE*,
PRINT-BASE and *READ-BASE* bound to the values in the

ENVIRONMENT object. Both *PRINT-BASE* and *READ-BASE*
are bound to the single BASE value in the environment.

(GET-ENVIRONMENT-AND-FILEMAP STREAM DONTCACHE) [Function]

Parses the header of a file produced by the File Manager and

returns up to four values:

1. The reader environment in which the file was written;

2. The file’s "filemap", used to locate functions on the file;

3. The file position where the FILECREATED expression starts;

and

4. A value used internally by the File Manager.

STREAM can be a full file name, in which case this function returns

NIL unless the information was previously cached. Otherwise,

STREAM is a stream open for input on the file. It must be randomly

accessible (unless information is available from the cache). If the

file is in Common Lisp format (it begins with a comment), then

value 1 is the default Common Lisp reader environment (readtable

LISP, package USER) and the other values are NIL. Otherwise, if

the file is not in File Manager format, values 1 and 2 are NIL, 3 is

zero.

If DONTCACHE is true, the function does not cache any

information it learns about File Manager files; otherwise, the

information is cached to speed up future inquiries.

3-25LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Section 17.1 Loading Files

(II:17.5)

Integration of Interlisp and Common Lisp LOAD functions

There are four kinds of files that can be loaded in Lisp:

1. Interlisp and Common Lisp source files produced by the File

Manager using, for example, the MAKEFILE function.

2. Standard Common Lisp source files produced with a text editor

either in Lisp or from some other Common Lisp implementation.

3. DFASL files of compiled code, produced by the new XCL

Compiler, CL:COMPILE-FILE (extension DFASL)

4. LCOM files of compiled code, produced by the old Interlisp

Compiler (BCOMPL, TCOMPL).

Types 1 and 4 were the only kind of files that you could load in

Koto; types 2 and 3 are new with Lyric. Both IL:LOAD and

CL:LOAD are capable of loading all four kinds of files. However,

they use the following rules to make the types of files unambiguous

so that they can be loaded in the correct reader environment.

• If the file begins with an open parenthesis (possibly after

whitespace and font switch characters), it is assumed to be of

type 1 or 4: files produced by the File Manager. The first

expression on the file (at least) is assumed to be written in the

old FILERDTBL environment; for new Lyric files this expression

defines the reader environment for the remainder of the file.

See the section, Reader Environments and File Manager for

details.

• If the file begins with the special FASL signature byte (octal

221), it is assumed to be a compiled file in FASL format, and is

processed by the FASL loader. The FASL loader ignores the

LDFLG argument to IL:LOAD, treating all files as though

LDFLG were SYSLOAD (redefinition occurs, is not undoable,

and no File Manager information is saved).

• If the file begins with a semicolon, it is assumed to be a pure

Common Lisp file. The expressions on the file are read with

the standard Common Lisp readtable and in package USER

(unless a package argument was given to LOAD; see below).

• If the file begins with any other character, LOAD doesn’t know

what to do. Currently, it treats the file as a pure Common Lisp

file (as if it started with a comment).

Thus, if you prepare Common Lisp text files you should be sure to

begin them with a comment so that LOAD can tell the file is in

Common Lisp syntax.

The function CL:LOAD accepts an additional keyword :PACKAGE,

whose value must be a package object; the function IL:LOAD

similarly has an optional fourth argument PACKAGE. If a package

argument is given, then LOAD reads Common Lisp text files (type

2 above) with *PACKAGE* bound to the specified package. In the

3-26 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

case of File Manager files (types 1 and 4), the package argument

overrides the package specified in the file’s reader environment.

(II:17.6-17.8)

The Interlisp functions LOADFNS, LOADFROM, LOADVARS and

LOADCOMP do not work on FASL files. They do still work on files

produced by the old compiler (extension LCOM).

(II:17.9)

FILESLOAD (also used by the File Manager’s FILES command)

now searches for compiled files by looking for a file by the specified

name whose extension is in the list *COMPILED-EXTENSIONS*.
The default value for *COMPILED-EXTENSIONS* in the Lyric

release is (DFASL LCOM). It searches the list of extensions in

order for each directory on the search path. This means that FASL

files are loaded in preference to old-style compiled files.

Section 17.2 Storing Files

The Lyric release contains two different compilers, the Interlisp

Compiler that was present in Koto and previous releases, and the

new XCL Compiler (see the next section, Chapter 18 Compiler).

With more than one compiler available, the question arises as to

which compiler will be used by the functions CLEANUP and
MAKEFILE. The default behavior of these functions in Lyric is to

always use the new XCL Compiler. This default can be changed,

either on a file-by-file basis or system-wide. Most users, however,

will have no need to change the default.

When the C or RC option has been given to MAKEFILE, the

system first looks for the value of the FILETYPE property on the

symbol naming the file. For example, for the file

"{DSK}<LISPFILES>MYFILE", the property list of the symbol

MYFILE would be examined.

The FILETYPE property should be either a symbol from the list

below or a list containing one of those symbols. The following

symbols are allowed and have the given meanings:

:TCOMPL Compile this file by calling either TCOMPL or RECOMPILE,

depending upon which of the C or RC options was passed to

MAKEFILE.

:BCOMPL Compile this file by calling either BCOMPL or BRECOMPILE,

depending upon which of the C or RC options was passed to
MAKEFILE. This is equivalent to the Koto behavior.

:COMPILE-FILE Compile this file by calling CL:COMPILE-FILE, regardless of which

option was passed to MAKEFILE.

If no FILETYPE property is found, then the function whose name is

the value of the variable *DEFAULT-CLEANUP-COMPILER* is

used. The only legal values for this variable are TCOMPL,
BCOMPL, and CL:COMPILE-FILE. Initially, *DEFAULT-
CLEANUP-COMPILER* is set to CL:COMPILE-FILE.

If you choose to set the FILETYPE property of file name, you

should take care that the filecoms for that file saves the value of

that property on the file. This will ensure that the same compiler

3-27LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

will be used every time the file is loaded. To save the value of the

property, you should include a line in the coms like the following:

 (PROP FILETYPE MYFILE)

where MYFILE is the symbol naming your file.

Section 17.8.2 Defining New File Manager Types

(II:17.30)

The File Manager has been extended to allow File Manager types

that accept any Lisp object as a name. A consequence of this is

that any user-defined type’s HASDEF function should be prepared

to accept objects other than symbols as the NAME argument.

Names are compared using EQUAL.

Definers: A New Facility for Extending the File Manager

The Definer facility is provided to make the process of adding a

certain common kind of File Manager type easy. All of the new File

Manager types in the Lyric release (including FUNCTIONS,

VARIABLES, STRUCTURES, etc.) and almost all of the new

defining macros (including CL:DEFUN, CL:DEFPARAMETER,

CL:DEFSTRUCT, etc.) were themselves created using the Definer

facility.

In previous releases, adding new types and commands to the File

Manager involved deeply understanding the way in which it worked

and defining a number of functions to carry out certain operations

on the new type/command. Further, making functions and macros

save away definitions of the new type was similarly subtle and

generally difficult or complicated to do. With the addition of

Common Lisp, it was realized that a large number of new types and

commands would be added, all needing essentially the same

implementation of the various operations. In addition, many new

defining macros were to be added and all of them needed to save

definitions.

As an explanation of the Definer facility, we will describe how

VARIABLES and CL:DEFPARAMETER could be added into the

system, if they were not already there.

First, a little background about our example. The macro

CL:DEFPARAMETER is used in Common Lisp to globally declare

a given variable to be special and to give it an initial value. (For the

purposes of this example, we will ignore the documentation-string

given to real CL:DEFPARAMETER forms.) The value of a call to

the macro should be the name of the variable being defined. An

acceptable definition of this macro might appear as follows:

(DEFMACRO CL:DEFPARAMETER (SYMBOL EXPRESSION)
 ‘(PROGN
 (CL:PROCLAIM ’(CL:SPECIAL ,SYMBOL))
 (SETQ ,SYMBOL ,EXPRESSION)
 ’,SYMBOL))

There are some problems with using such a simple definition in the

Lisp environment, however. For example, if a call to this macro

were typed to the Exec, the File Manager would not be told to

notice it. Thus, there would be no convenient way to remember to

3-28 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

add the form to the filecoms of some file and thus to save it away.

Also, note that the macro does not pay attention to the DFNFLG

variable; thus, loading a file containing a CL:DEFPARAMETER

form would always set the variable to the value of the initial

expression, even when DFNFLG was set to ALLPROP. This could

make editing code using this variable difficult.

We will now proceed to fix these problems by getting the Definer

facility involved. There are two steps involved in using Definers:

• Unless one of the currently-existing File Manager types is

appropriate for definitions using the new macro, a new type

must be created. The macro XCL:DEF-DEFINE-TYPE is

used for this purpose.

• The macro must be defined in such a way that the File

Manager can tell that it should notice and save uses of the

macro and under which File Manager type the uses should

be saved. The macro XCL:DEFDEFINER is used for this

purpose.

Since we are pretending for the example that the File Manager type

VARIABLES is not defined, we decide that definitions using

CL:DEFPARAMETER should not be given any of the already-

existing types. We must define a type, therefore, and we decide to

call it VARIABLES. The following XCL:DEF-DEFINE-TYPE form

will do the trick:

(XCL:DEF-DEFINE-TYPE VARIABLES "Common Lisp
variables")

The first argument to XCL:DEF-DEFINE-TYPE is the name for the

new type. The second argument is a descriptive string, to be used

when printing out messages about the type.

With the new type thus created, we can now use

XCL:DEFDEFINER to redefine the macro. Simply changing the

word DEFMACRO into XCL:DEFDEFINER and adding an

argument specifying the new type suffices to change our earlier

definition into a use of the Definer facility:

(XCL:DEFDEFINER CL:DEFPARAMETER VARIABLES
 (SYMBOL EXPRESSION)
 ‘(PROGN
 (CL:PROCLAIM ’(CL:SPECIAL ,SYMBOL))
 (SETQ ,SYMBOL ,EXPRESSION)
 ’,SYMBOL))

(In fact, we could also remove the final ’,SYMBOL;

XCL:DEFDEFINER automatically arranges for the new macro to

return the name of the new definition.) Now, if we were to type the

form

(CL:DEFPARAMETER *FOO* 17)

into the Exec and then call the function FILES?, we would be

presented with something like the following:

24> (FILES?)
the Common Lisp variables: *FOO*
...to be dumped. want to say where the above go?

As with other File Manager types, our definitions are being kept

track of. If we answer Yes to the above question and specify a file

3-29LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

in which to save the definition, a command like the following will be

added to the filecoms:

(VARIABLES *FOO*)

Actually, the output from FILES? as shown above is not quite

accurate. In reality, we would also be asked about the following:

the Common Lisp functions/macros: CL:DEFPARAMETER
the Definition types: VARIABLES

The File Manager is also watching for new types and new Definers

being created and will let us save those definitions as well. These

would be listed in the filecoms as follows:

(DEFINE-TYPES VARIABLES)
(FUNCTIONS CL:DEFPARAMETER)

All of these definitions are full-fledged File Manager citizens. The

functions GETDEF, HASDEF, PUTDEF, DELDEF, etc. all work

with the new type. We can edit the definition of *FOO* above

simply by specifying the type to the ED function:

(ED ’*FOO* ’VARIABLES)

When we exit the editor, the new definition will be saved and,

unless DFNFLG is set to PROP or ALLPROP, evaluated.

It is now time to fully describe the macros XCL:DEF-DEFINE-TYPE

and XCL:DEFDEFINER.

XCL:DEF-DEFINE-TYPE NAME DESCRIPTION &KEY :UNDEFINER [Macro]

Creates a new File Manager type and command with the given

NAME. The string DESCRIPTION will be used to describe the type

in printed messages. The new type implements PUTDEF

operations by evaluating the definition form, GETDEF and

HASDEF by looking up the given name in an internal hash-table,

using EQUAL as the equality test on names, and DELDEF by

removing any named definition from the hash-table. If the

:UNDEFINER argument is provided, it should be the name of a

function to be called with the NAME argument to any DELDEF

operations on this type. The :UNDEFINER function can perform

any other operations necessary to completely delete a definition.

XCL:DEF-DEFINE-TYPE forms are File Manager definitions of type

DEFINE-TYPES.

As an example of the full use of XCL:DEF-DEFINE-TYPE, here is

the complete definition of the type VARIABLES as it exists in the

Lyric release:

(XCL:DEF-DEFINE-TYPE VARIABLES "Common Lisp variables"
:UNDEFINER UNDOABLY-MAKUNBOUND)

The function UNDOABLY-MAKUNBOUND is described in

Appendix D of these Release Notes.

XCL:DEFDEFINER {NAME | (NAME {OPTION}*)} TYPE ARG-LIST &BODY BODY [Macro]

Creates a macro named NAME, calls to which are seen as File

Manager definitions of type TYPE. TYPE must be a File Manager

type previously defined using XCL:DEF-DEFINE-TYPE. ARG-LIST

and BODY are precisely as in DEFMACRO. A macro defined using

3-30 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

XCL:DEFDEFINER differs from one defined using DEFMACRO in

the following ways:

• BODY will be evaluated if and only if the value of DFNFLG is

not one of PROP or ALLPROP.

• The form returned by BODY will be evaluated in a context in

which the File Manager has been temporarily disabled. This

allows Definers to expand into other Definers without the

subordinate ones being noticed by the File Manager.

• Calls to Definers return the name of the new definition (as,

for example, CL:DEFUN and CL:DEFPARAMETER are

defined to do).

• Calls to Definers are noticed and remembered by the Fie

 Manager, saved as a definition of type TYPE.

• SEdit- and Interlisp-style comment forms (those with a CAR

of IL:*) are stripped from the macro call before it is passed to

BODY. (This comment-removal is partially controlled by the

value of the variable *REMOVE-INTERLISP-COMMENTS*,
described below.)

The following OPTIONs are allowed:

(:UNDEFINER FN)

If DELDEF is called on a name whose definition is a call to this

Definer, FN will be called with one argument, the name of the

definition. This option allows for Definer-specific actions to be

taken at DELDEF time. This is useful when more than one Definer

exists for a given type. FN should be a form acceptable as the

argument to the FUNCTION special form.

(:NAME NAME-FN)

By default, the Definer facility assumes that the first argument to

any macro defined using XCL:DEFDEFINER will be the name

under which the definition should be saved. This assumption holds

true for almost all Common Lisp defining macros, including

CL:DEFUN, CL:DEFMACRO, CL:DEFPARAMETER and

CL:DEFVAR. It doesn’t work, however, for a few other forms, such

as CL:DEFSTRUCT and XCL:DEFDEFINER itself. When defining

a macro for which that assumption is false, the :NAME option

should be used. NAME-FN should be a function of one argument,

a call to the Definer. It should return the Lisp object naming the

given definition (most commonly a symbol, but any Lisp object is

permissible). For example, the :NAME option in the definitions of

CL:DEFSTRUCT and XCL:DEFDEFINER is as follows:

(:NAME (LAMBDA (FORM)
 (LET ((NAME (CADR FORM)))
 (COND ((LITATOM NAME)
 NAME)
 (T (CAR NAME))))))

NAME-FN should be a form acceptable as the argument to the

FUNCTION special form (i.e., a symbol naming a function or a

LAMBDA-form).

3-31LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

(:PROTOTYPE DEFN-FN)

When the editor function ED is passed a name with no definitions,

the user is offered a choice of several ways to create a prototype

definition. Those choices are specified with the :PROTOTYPE

option to XCL:DEFDEFINER. DEFN-FN should be a function of

one argument, the name to be defined using this Definer. DEFN-

FN should return either NIL, if no definition of that name can be

created with this Definer, or a form that, when evalauted, would

create a definition of that name. For example, the :PROTOTYPE

option for CL:DEFPARAMETER might look as follows:

(:PROTOTYPE (LAMBDA (NAME)
 (AND (LITATOM NAME)
 ‘(CL:DEFPARAMETER ,NAME "Value"))))

An example using all of the features of XCL:DEFDEFINER is the

definition of XCL:DEFDEFINER itself, which begins as follows:

(XCL:DEFDEFINER (XCL:DEFDEFINER
 (:UNDEFINER \DELETE-DEFINER)
 (:NAME
 (LAMBDA (FORM)
 (LET ((NAME (CADR FORM)))
 (COND ((LITATOM NAME)
 NAME)
 (T (CAR NAME))))))
 (:PROTOTYPE
 (LAMBDA (NAME)
 (AND (LITATOM NAME)
 ‘(XCL:DEFDEFINER ,NAME "Type"
 ("Arg List")
 "Body")))))
 FUNCTIONS
 (NAME-AND-OPTIONS TYPE ARG-LIST &BODY BODY)
 ...)

The following variable is used in the process of removing SEdit-

and Interlisp-style comments from Definer forms:

REMOVE-INTERLISP-COMMENTS [Variable]

Interlisp-style comments are forms whose CAR is the symbol IL:*.
It is possible for certain lists in Lisp code to begin with IL:* but not

be a comment (for example, a SELECTQ clause). When such a list

is discovered, the value of *REMOVE-INTERLISP-COMMENTS* is

examined. If it is T, the list is assumed to be a comment and is

removed without comment. If it is :WARN, a warning message is

printed, saying that a possible comment was not stripped from the

code. If *REMOVE-INTERLISP-COMMENTS* is NIL, the list is not

removed, but no warning is printed. This variable is initially set to

:WARN.

(CL:EVAL-WHEN WHEN COM1 ... COMN) [File Package Command]

Interprets each of the commands COM1 ... COMN as a file

package command, but output is wrapped in CL:EVAL-WHEN.

EXAMPLE:

(CL:EVAL-WHEN (CL:EVAL CL:COMPILE)

 (OPTIMIZERS FOO))

will cause the following to be written to the file:

3-32 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

(CL:EVAL-WHEN (CL:COMPILE)

 (DEFOPTIMIZER FOO <optimizer for FOO>))

Chapter 18 Compiler

The Lyric release contains two distinct Lisp compilers:

• The Interlisp Compiler, described in detail in Section 18 of the

IRM,

• The new XCL Compiler, described in the Common Lisp

Implementation Notes.

The Interlisp Compiler provides compatibility with previous releases

of Interlisp-D. It continues to work in very much the same way as it

did in Koto; as before, it compiles all of the Interlisp language. The

Interlisp Compiler does not, however, compile the Common Lisp

language and will not be extended to do so. The Lyric release is

the last release to contain the Interlisp Compiler as a component;

future releases will have only the new XCL Compiler. The XCL

Compiler is designed to handle both Interlisp and Common Lisp.

Several incompatible changes have been made in the compiled

object code produced by the Interlisp Compiler. This means that all

user code must be recompiled in Lyric. Code compiled in Koto or

previous releases will not load into Lyric, and code compiled in

Lyric wil not load into earlier releases. The filename extension for

Interlisp compiled files has been changed from DCOM to LCOM in

order to minimize possible confusion.

The XCL Compiler writes its output on a new kind of object file, the

DFASL file. These files are quite different from the DCOM/LCOM

files produced by the Interlisp Compiler. DFASL files are somewhat

more compact, much faster to load and can represent a wider

range of data objects than was possible in LCOMs.

Interlisp source files from Koto can be compiled using the new XCL

compiler. However, some files need to be remade in Lyric before

compilation: files containing bitmaps, Interlisp arrays, or the
UGLYVARS and/or HORRIBLEVARS File Manager commands.

To compile such a file, first LOAD it, then call MAKEFILE to write it

back out. This action causes the bitmaps and other unusual

objects to be written back in a format acceptable to the new

compiler.

The default behavior of the File Manager’s CLEANUP and

MAKEFILE functions is to use the new XCL Compiler to compile

files, rather than the old Interlisp Compiler. To change this

behavior, see Section 17.2, Storing Files.

Note that if you call the compiler explicitly, rather than via

CLEANUP or MAKEFILE, you should be careful to specify the

correct compiler. The new compiler is invoked by calling

CL:COMPILE-FILE. If you inadvertantly call BCOMPL on a file for

which CLEANUP has routinely been using the new XCL compiler,

there are two undesirable consequences: (1) Any Common Lisp

3-33LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

functions on the file will not be compiled (the Interlisp compiler does

not recognize CL:DEFUN), and (2) the DFASL files produced by

earlier calls on the XCL compiler will still be loaded by FILESLOAD

in preference to the LCOM file produced by BCOMPL.

Lisp provides a facility, XCL:DEFOPTIMIZER, by which you can

advise the compiler about efficient compilation of certain functions

and macros. XCL:DEFOPTIMIZER works with both the old

Interlisp Compiler and the Lyric XCL Compiler. See the Common

Lisp Implementation Notes for a description of the compiler.

Warning when Loading Compiled Files

CAUTION: Files compiled in Medley cannot be loaded back into

Lyric. Medley-compiled .LCOM and .DFASL files will produce an

error message when loaded into Lyric. (Lyric-compiled .LCOM and

.DFASL files can be loaded and run in Medley.) If you need to

run a Medley file in Lyric, load the source file and use the Lyric

compiler.

Warning with Declarations

CAUTION: There is a feature of the BYTECOMPILER that is not

supported by either the XCL compiler or SEdit. It is possible to

insert a comment at the beginning of your function that looks like

(* DECLARATIONS: --)

The tail, or -- section, of this comment is taken as a set of local

record declarations which are then used by the compiler in that

function just as if they had been declared globally. The XCL

compiler does not directly support this feature. If the body of the

function gets DWIMIFIED for some other reason, the record

declarations will happen to be noticed, otherwise they will not be

seen and the compiler will signal an error if it can’t find an

appropriate top-level record definition.

There are two caveats that you should note:

1. The compiler will give error messages "undefined record name

..." for the records that are declared this way, but will generate

correct code.

2. SEdit does not recognize such declarations. Thus, if the

"Expand" command is used in SEdit, the expansion will not be done

with these record declarations in effect. The code that you see in

the editor will not be the same code compiled by the

BYTECOMPILER.

3-34 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Section 18.3 Local Variables and Special Variables

(II:18.5)

The new execs always use the Common Lisp interpreter, causing

LET and PROG statements at top level, particularly in a so-called

Interlisp exec, to create lexical bindings, rather than deep or

"special" bindings This can be worked around by setting

il:specvars to T, which will cause the interpreter to create special

bindings for all variables. This can also be worked around by

wrapping the form to be "interlisp evaluated" in the IL:INTERLISP

special form, which causes the Interlisp interpreter to be invoked.

Chapter 19 Masterscope

Masterscope is now a Lisp Library Module, not part of the

environment.

Chapter 21 CLISP

CLISP infix forms do not work under the Common Lisp evaluator;

only "clean" CLISP prefix forms are supported. You should run

DWIMIFY in Koto on all other CLISP code before attempting to load

it in Lyric. The remainder of this note describes the specific

limitations on CLISP in Lyric.

There are two broad classes of transformations that DWIM applies
to Lisp code:

1. A sort of macro expander that transforms IF, FOR, FETCH, etc.

forms into "pure" Lisp code in well-defined ways.

2. A heuristic "corrector" that performs spelling correction and

transforms CLISP infix forms such as X+Y into (PLUS X Y),

sometimes having to make guesses as to whether X+Y might

really have been the name of a variable.

An operational way of distinguishing the two is that DWIMIFY

applied to code of type (1) makes no alterations in the code,

whereas for code of type (2) it physically changes the form.

Another difference is that code of type (2) must be dwimified before

it can be compiled (user typically sets DWIMIFYCOMPFLG to T),

whereas the compiler is able to treat code of type (1) as a special

kind of macro.

Broadly speaking, code of type (2) is no longer fully supported. In

particular, DWIM is invoked only when the code is encountered by

the Interlisp evaluator. This means code typed to an "Old Interlisp"

Executive, and code inside of an interpreted Interlisp function.

Furthermore, some CLISP infix forms no longer DWIMIFY correctly.

It is likely that CLISP infix will not be supported at all in future

releases.

3-35LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

Expressions typed to the new Executives and inside of Common

Lisp functions are run by the Common Lisp evaluator (CL:EVAL).

As far as this evaluator is concerned, DWIM does not exist, and

forms beginning with "CLISP" words (IF, FOR, FETCH, etc) are

macros. These macros perform no DWIM corrections, so all of the

subforms must be correct to begin with. This is a change from past

releases, where the DWIM expansion of a CLISP word form also

had the side effect of transforming any CLISP infix that it might

have contained. For example, the macro expansion of

(if X then Y+1)

treats Y+1 as a variable, rather than as an addition. The correct

form is

 (if X then (PLUS Y 1)),

which is the way an explicit call to DWIMIFY would transform it.

If you have CLISP code from Koto you are advised to DWIMIFY the

code before attempting to run or compile it in Lyric. Because of

differences in the environments, not all CLISP constructs will

DWIMIFY correctly in Lyric. In particular, the following do not work

reliably, or at all:

1. The list-composing constructs using < and > do not DWIMIFY if

the < is unpacked (an isolated symbol), because in Common

Lisp, < is a perfectly valid CAR of form. On the other hand, the

closing > must be unpacked if the last list element is quoted,

since, for example, (<A ’B>) reads as (<A (QUOTE B>)).

2. Because of the conventional use of the characters * and - in

Common Lisp names, those characters are only recognized as

CLISP operators when they appear unpacked.

3. On the other hand, the operators + and / are the names of

special variables in Common Lisp (Steele, p. 325), and hence

cause no error when passed unpacked to the evaluator. Thus

(LIST X + Y) returns a list of three elements, with no resort

to DWIM; however, the parenthesized version (LIST (X +

Y)) and the packed version (LIST X+Y) both work.

If you routinely DWIMIFY code, so that no CLISP infix forms (type 2

above) remain on your source files, you may not need to make any

changes. However, note that the fact that DWIMIFY of prefix forms

implicitly performed infix transformations can hide code that

escaped being completely dwimified before being written to a file.

There is a further caution regarding even routinely dwimified code

that has not been edited since before Koto. Two uses of the

assignment operator (_) no longer work, if not explicitly dwimified,

because their canonical form (the output of DWIMIFY) has

changed, and the old form is no longer supported when the form is

simply evaluated, macro-expanded, or compiled (with

DWIMIFYCOMPFLG = NIL):

1. Iterative statement bindings must always be lists. For example,

the old form

 (bind X_2 for Y in --)

3-36 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

is now canonically

 (bind (X _ 2) for Y in --).

2. In a WITH expression, assignments must be dwimified to

remove _. For example, the old form

 (with MYRECORD MYFIELD _ (FOO))

is now canonically

 (with MYRECORD (SETQ MYFIELD (FOO))).

DWIMIFY in Koto correctly made these transformations; however,

in some older releases, it did not. Such old code must be explicitly

dwimified (which you can do for these cases in Lyric). The errors

resulting from failure to do so can be subtle. In particular, the

compiler issues no special warning when such code is compiled.

For example, in case 1, the macro expansion of the old form treats

the symbol X_2 as a variable to bind, rather than as a binding of the

variable X with initial value 2. The only hint from the compiler that

anything is amiss is likely to be an indication that the variable X is

used freely but not bound. Case 2 is even subtler: the symbols

MYFIELD and _ are treated as symbols to be evaluated; since their

values are not used, the compiler optimizes them away, reducing

the entire expression to simply (FOO), and there is thus no warning

of any sort from the compiler.

Chapter 22 Performance Issues

Section 22.3 Performance Measuring

(II:22.8)

The Interlisp-D TIME function has been withdrawn and replaced

with the Common Lisp TIME macro (the symbol TIME is shared

between IL and CL and thus need not be typed with a package

prefix). The functionality of the TIMEN and TIMETYP arguments to

the old TIME can be had by keywords to the TIME macro. The

Common Lisp Implementation Notes describe the new TIME macro

and its associated command in more detail.

3-37LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

 3. COMMON LISP/INTERLISP-D INTEGRATION

[This page intentionally left blank]

