
3-1LISP RELEASE NOTES,  MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3.  COMMON LISP/INTERLISP-D 
INTEGRATION

NOTE:   Chapter 3 is organized to correspond to the original  

Interlisp-D Reference Manual,  and explains  changes related to 

how Common Lisp affects Interlisp-D in your Lisp software 

development environment.    To make it easy to use this chapter 

with the IRM,  information is organized by  IRM  volume and  

section numbers.  Section headings from the IRM are maintained to 

aid in cross-referencing.

Lyric information as well as Medley release enhancements are 

included.    Medley additions are indicated with revision bars in the 

right margin.  

VOLUME I—LANGUAGE

Chapter 2 Litatoms

(2.1)

What Interlisp calls a "LITATOM" is the same as what Common 

Lisp calls a "SYMBOL."   Symbols are partitioned into separate 

name spaces called packages.  When you type a string of 

characters, the resulting symbol is searched for in the "current 

package."  A colon in the symbol separates a package name from a 

symbol name; for example, the string of characters "CL:AREF" 

denotes the symbol AREF accessible in the package CL.  For a full 

discussion, see Guy Steele’s Common Lisp, the Language.

All the functions in this section that create symbols do so in the 

INTERLISP package (IL), which is also where all the symbols in the 

Interlisp-D Reference Manual are found.  Note that this is true even 

in cases where you might not expect it.  For example, U-CASE 

returns a symbol in the INTERLISP package, even when its 

argument is in some other package; similarly with L-CASE and 

SUBATOM.  In most cases, this is the right thing for an Interlisp 

program; e.g., U-CASE in some sense returns a "canonical" symbol 

that one might pass to a SELECTQ, regardless of which executive 

it was typed in.  However, to perform symbol manipulations that 

preserve package information, you should use the appropriate 

Common Lisp functions (See Common Lisp the Language, Chapter 

11, Packages and Chapter 18, Strings).

Symbols read under an old Interlisp readtable are also searched for 

in the INTERLISP package.  See Section 25.8, Readtables, for 

more details.



3-2 LISP RELEASE NOTES,  MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

Section 2.1 Using Litatoms as Variables

(I:2.3) 

(BOUNDP VAR) [Function]

The Interlisp interpreter has been modified to consider any symbol 

bound to the distinguished symbol NOBIND  to be unbound.  It will 

signal an UNBOUND-VARIABLE condition on encountering 

references to such symbols.  In prior releases, the interpreter only 

considered a symbol unbound if it had no dynamic binding and in 

addition its top-level value was NOBIND.

For most user code, this change has no effect, as it is unusual to 

bind a variable to the particular value NOBIND and still deliberately 

want the variable to be considered bound.  However, it is a 

particular problem when an interpreted Interlisp function is passed 

to the function MAPATOMS.  Since NOBIND is a symbol, it will 

eventually be passed as an argument to the interpreted function.  

The first reference to that argument within the function will signal an 

error.

A work-around for this problem is to use a Common Lisp function 

instead.  Calls to this function will invoke the Common Lisp 

interpreter which will treat the argument as a local, not special, 

variable.  Thus, no error will be signaled.  Alternatively, one could 

include the argument to the Interlisp function in a LOCALVARS 
declaration and then compile the function before passing it to 

MAPATOMS.  This has the advantage of significantly speeding up 

the MAPATOMS call.

Section 2.3 Property Lists

(I:2.6) 

The value returned from the function  REMPROP  has been 

changed in one case:

(REMPROP ATM PROP) [Function]

Removes all occurrences of the property PROP (and its value) from 

the property list of ATM. Returns PROP if any were found (T if 

PROP is NIL), otherwise NIL.

Section 2.4 Print Names

(I:2.7)

The print functions now qualify the name of a symbol with a 

package prefix if the symbol is not accessible in the current 

package.  The Interlisp "PRIN1" print name of a symbol does not 

include the package name. 

(I:2.10)

The GENSYM function in Interlisp creates symbols interned in the 

INTERLISP package. The Common Lisp CL:GENSYM  function 

creates uninterned symbols.



3-3LISP RELEASE NOTES,  MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

(I:2.11)

(MAPATOMS FN) [Function]

See the note for BOUNDP above.

Section 2.5 Characters

A "character" in Interlisp is different from the type "character" in 

Common Lisp.  In Common Lisp, "character" is a distinguished data 

type satisfying the predicate CL:CHARACTERP.  In Interlisp, a 

"character" is a single-character symbol, not distinguishable from 

the type symbol (litatom).  Interlisp also uses a more efficient object 

termed "character code", which is indistinguishable from the type 

integer.

Interlisp functions that take as an argument a "character" or 

"character code" do not in general accept Common Lisp characters.  

Similarly, an Interlisp "character" or "character code" is not 

acceptable to a Common Lisp function that operates on characters.  

However, since Common Lisp characters are a distinguished 

datatype, Interlisp string-manipulation functions are willing to accept 

them any place that a "string or symbol" is acceptable; the 

character object is treated as a single-character string.

To convert an Interlisp character code n to a Common Lisp 

character, evaluate (CL:CODE-CHAR n).  To convert a Common 

Lisp character to an Interlisp character code, evaluate (CL:CHAR-
CODE n).  For character literals, where in Interlisp one would write 

(CHARCODE x), to get the equivalent Common Lisp character one 

writes #\x.  In this syntax, x can be any character or string 

acceptable to CHARCODE; e.g., #\GREEK-A.

Chapter 4 Strings

(I:4.1)

Interlisp strings are a subtype of Common Lisp strings.  The 

functions in this chapter accept Common Lisp strings, and produce 

strings that can be passed to Common Lisp string manipulation 

functions.

Chapter 5 Arrays

Interlisp arrays and Common Lisp arrays are disjoint data types.  

Interlisp arrays are not acceptable arguments to Common Lisp 

array functions, and vice versa.  There are no functions that convert 

between the two kinds of arrays.



3-4 LISP RELEASE NOTES,  MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

Chapter 6 Hash Arrays

Interlisp hash arrays and Common Lisp hash tables are the same 

data type, so Interlisp and Common Lisp hash array functions may 

be freely intermixed.  However, some of the arguments are 

different; e.g., the order of arguments to the map functions in 
IL:MAPHASH and CL:MAPHASH differ.  The extra functionality of 

specifying your own hashing function is available only from Interlisp 

HASHARRAY, not CL:MAKE-HASH-TABLE , though the latter 

does supply the three built-in types specified by Common Lisp, the 

Language.

Chapter 7 Numbers and Arithmetic Functions

(I:7.2)

The addition of Common Lisp data structures within the  Lisp 

environment means that there are some invariants which used to 

be true for anything in the environment that are no longer true. 

For example, in Interlisp, there were two kinds of numbers: integer 

and floating.  With Common Lisp, there are additional kinds of 

numbers, namely ratios and complex numbers, both of which 

satisfy the Interlisp predicate NUMBERP.  Thus, NUMBERP is no 

longer the simple union of  FIXP  and  FLOATP.  It used to be that 

a program containing

(if (NUMBERP X)
  then (if (FIXP X)

          then  ...assume X is an integer ...
        else  ...can assume X is floating point...))

would be correct in Interlisp. However, this is no longer true; this 

program will not deal correctly with ratios or complex numbers, 

which are NUMBERP but neither FIXP nor FLOATP. 

Section 7.2 Integer Arithmetic

When typing to a new Interlisp Executive, the input syntax for 

integers of radix other than 8 or 10 has been changed to match that 

of Common Lisp.  Use # instead of |, e.g., #b10101 is the new 

syntax for binary numbers, #x1A90 for hexadecimal, etc.  Suffix Q 

is still recognized as specifying octal radix, but you can also use 

Common Lisp’s #o syntax.

(I:7.4)

In the Lyric release, the FASL machinery would handle some 

positive literals incorrectly, reading them back as negative 

numbers. The numbers handled incorrectly were those numbers x 

greater than 2**31-1 for which (mod (integer-length x) 8) was zero.  

The Medley release fixes this situation.  Any files containing such 

numbers should be recompiled.  



3-5LISP RELEASE NOTES,  MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

Chapter 10 Function Definition, Manipulation, and Evaluation

Section 10.1 Function Types

All Interlisp  NLAMBDAs appear to be macros from Common Lisp’s 

point of view.  This is discussed at greater length in  Common Lisp 

Impementation Notes, Chapter 8, Macros.

Section 10.6 Macros

(EXPANDMACRO EXP QUIETFLG — — ) [Function]

EXPANDMACRO only works on Interlisp macros, those appearing 

on the MACRO, BYTEMACRO or DMACRO properties of symbols.  

Use CL:MACROEXPAND-1 to expand Common Lisp macros and 

those Interlisp macros that are visible to the Common Lisp compiler 

and interpreter.

Section 10.6.1 DEFMACRO

(I:10.24) 

Common Lisp does not permit a symbol to simultaneously name a 

function and a macro.  In Lyric, this restriction also applies to 

Interlisp macros defined by DEFMACRO.  That is, evaluating 

DEFMACRO for a symbol automatically removes any function 

definition for the symbol.  Thus, if your purpose for using a macro is 

to make a function compile in a special way, you should instead 

use the new form XCL:DEFOPTIMIZER, which affects only 

compilation.  The Xerox Common Lisp Implementation Notes 

describe XCL:DEFOPTIMIZER.

Interlisp DMACRO properties have typically been used for 

implementation-specific optimizations.  They are not subject to the 

above restriction on function definition.  However, if a symbol has 

both a function definition and a DMACRO property, the Lisp 

compiler assumes that the DMACRO was intended as an optimizer 

for the old Interlisp compiler and ignores it.

Chapter 11 Stack Functions

Section 11.1 The Spaghetti Stack

Stack  pointers  now print in the form 

#<Stackp address/framename>.

Some restrictions were placed on spaghetti stack manipulations in 

order to integrate reasonably with Common Lisp’s CL:CATCH and 

CL:THROW.  In Lyric,  it is an error to return to the same frame 

twice, or to return to a frame that has been unwound through.  This 

means, for example, that if you save a stack pointer to one of your 

ancestor frames, then perform a CL:THROW or RETFROM that 

returns "around" that frame, i.e., to an ancestor of that frame, then 



3-6 LISP RELEASE NOTES,  MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

the stack pointer is no longer valid, and any attempt to use it 

signals an error "Stack Pointer has been released".  It is also an 

error to attempt to return to a frame in a different process, using 

RETFROM, RETTO, etc.

The existence of spaghetti stacks raises the issue of under what 

circumstances the cleanup forms of CL:UNWIND-PROTECT are 

performed.  In Lisp, CL:THROW always runs the cleanup forms of 

any CL:UNWIND-PROTECT it passes.  Thanks to the integration of 

CL:UNWIND-PROTECT with  RESETLST and the other Interlisp 

context-saving functions, CL:THROW also runs the cleanup forms 

of any RESETLST it passes.  The Interlisp control transfer 

constructs   RETFROM, RETTO, RETEVAL and RETAPPLY  also 

run the cleanup forms in the analogous case, viz., when returning 

to a direct ancestor of the current frame.  This is a significant 

improvement over prior releases, where RETFROM never ran any 

cleanup forms at all.

In the case of RETFROM, etc, returning to a non-ancestor, the 

cleanup forms are run for any frames that are being abandoned as 

a result of transferring control to the other stack control chain.  

However, this should not be relied on, as the frames would not be 

abandoned at that time if someone else happened to retain a 

pointer to the caller’s control chain, but subsequently never 

returned to the frame held by the pointer.  Cleanup forms are not 

run for frames abandoned when a stack pointer is released, either 

explicitly or by being garbage-collected.  Cleanup forms are also 

not run for frames abandoned because of a control transfer via  

ENVEVAL or ENVAPPLY.  Callers of ENVEVAL or ENVAPPLY 

should consider whether their intent would be served as well by 

RETEVAL or RETAPPLY, which do run cleanup forms in most 

cases.

Chapter 12 Miscellaneous

Section 12.4 System Version Information

All the functions listed on page 12.12 in the Interlisp-D Reference 

Manual have had their symbols moved to the LISP (CL) package.  

They are not shared with the INTERLISP package and any 

references to them in your code will need to be qualified i.e., 

CL:name.

Section 12.8 Pattern Matching

Pattern matching is no longer a standard part of the environment.  

The functionality for Pattern matching can be found in the Lisp 

Library Module called MATCH.



3-7LISP RELEASE NOTES,  MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

[This page intentionally left blank]


