
B-1LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT—THE LISP
EDITOR

SEdit is the Lisp structure editor. It allows you to edit Lisp code

directly in memory. This editor replaces DEdit in Chapter 16,

Structure Editor, of the Interlisp-D Reference Manual. First

introduced in Lyric, the SEdit structure editor has been greatly

enhanced in the Medley release. Medley additions are indicated

with revision bars in the right margin.

16.1 SEdit - The Structure Editor

As a structure editor, SEdit alters Lisp code directly in memory.

The effect this has on the running system depends on what is being

edited.

For Common Lisp definitions, SEdit always edits a copy of the

object. For example, with functions, it edits the definition of the

function. What the system actually runs is the installed function,

either compiled or interpreted. The primary difference between the

definition and the installed function is that comment forms are

removed from the definition to produce the installed function. The

changes made while editing a function will not be installed until the

edit session is complete.

For Interlisp functions and macros, SEdit edits the actual structure

that will be run. An exception to this is an edit of an EXPR

definition of a compiled function. In this case, changes are included

and the function is unsaved when the edit session is completed.

SEdit edits all other structures, such as variables and property lists,

directly. SEdit installs all changes as they are made.

If an error is made during an SEdit session, abort the edit with an

Abort command (see Section 16.1.7, Command Keys). This

command undoes all changes from the beginning of the edit

session and exits from SEdit without changing your environment.

If the definition being edited is redefined while the edit window is

open, SEdit redisplays the new definition. Any edits on the old

definition will be lost. If SEdit was busy when the redefinition

occurred, the SEdit window will be gray. When SEdit is no longer

busy, position the cursor in the SEdit window and press the left

mouse button; SEdit will get the new definition and display it.

B-2 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

16.1.1 An Edit Session

The List Structure Editor discussion in Chapter 3, Language

Integration, explains how to start an editor in Lisp.

Whenever you call SEdit, a new SEdit window is created. This

SEdit window has its own process, and thus does not rely on an

Exec to run in. You can make edits in the window, shrink it while

you do something else, expand it and edit some more, and finally

close the window when you are done.

Throughout an edit session, SEdit remembers everything that you

do through a change history. All edits can be undone and redone

sequentially. When an edit session ends, SEdit forgets this

information and installs the changes in the system.

The session ends with an event signalling to the editor that

changes are complete. Three events signal completion:

• Closing the window.

Do this to terminate the edit session when you are finished.

• Shrinking the window.

Shrink the window when you have made some edits and may want

to continue the editing session at a later time.

• Typing one of the Completion Commands, listed below.

Each of these commands has the effect of installing your changes,

completing the edit, and returning the TTY process to the Exec.

They vary in what is done in addition to completing. Using these

commands the definition that you were editing can be automatically

compiled, the edit window can be closed, or both.

A new edit session begins when you come back to an SEdit after

completing. The change history is discarded at this point.

If the Exec is waiting for SEdit to return before going on, complete

the edit session using any of the methods above to alert the Exec

that SEdit is done. The TTY process passes back to the Exec .

16.1.2 SEdit Carets

There are two carets in SEdit, the edit caret and the structure caret.

The edit caret appears when characters are edited within a single

structure, such as an atom, string, or comment. Anything typed in

will appear at the edit caret as part of the structure that the caret is

within. The edit caret looks like this:

The structure caret appears when the edit point is between

structures, so that anything inserted will go into a new structure. It

looks like this:

B-3LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

SEdit changes the caret frequently, depending on where you are in

the structure you are editing, and how the caret is positioned. The

left mouse button allows an edit caret position to be set. The

middle mouse button allows the structure caret position to be set .

16.1.3 The Mouse

In SEdit, the mouse buttons are used as follows. The left mouse

button positions the mouse cursor to point to parts of Lisp

structures. The middle mouse button positions the mouse cursor to

point to whole Lisp structures. Thus, selecting the Q in LEQ using

the left mouse button selects that character, and sets the edit caret

after the Q:

Any characters typed in at this point would be appended to the

atom LEQ.

Selecting the same letter using the middle mouse button selects the

whole atom (this convention matches TEdit’s character/word

selection convention), and sets a structure caret between the LEQ

and the n:

At this point, any characters typed in would form a new atom

between the LEQ and the n.

Larger structures can be selected in two ways. Use the middle

mouse button to position the mouse cursor on the parenthesis of

the desired list to select that list. Press the mouse button multiple

times, without moving the mouse, extends the selection. Using the

previous example, if the middle button were pressed twice, the list

(LEQ ...) would be selected:

Pressing the button a third time would cause the list containing the

(LEQ n 1) to be selected.

The right mouse button positions the mouse cursor for selecting

sequences of structures or substructures. Extended selections are

indicated by a box enclosing the structures selected. The selection

is extended in the same mode as the original selection. That is, if

the original selection were a character selection, the right button

could be used to select more characters in the same atom.

Extended selections also have the property of being marked for

pending deletion. That is, the selection takes the place of the caret,

and anything typed in is inserted in place of the selection.

For example, selecting the E by pressing the left mouse button and

selecting the Q by pressing the right mouse button would produce:

B-4 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

Similarly, pressing the middle mouse button and then selecting with

the right mouse button extends the selection by whole structures.

Thus, in our example, pressing the middle mouse button to select

LEQ and pressing the right mouse button to select the 1 would

produce:

This is not the same as selecting the entire list, as above. Instead,

the elements in the list are collectively selected, but the list itself is

not.

16.1.4 Gaps

The SEdit structure editor requires that everything edited must have

an underlying Lisp structure, even if the structure is not directly

displayed. For example, with quoted forms the actual structure

might be (QUOTE GREEN), although this would be displayed as

’GREEN. Even when the user is in the midst of typing in a form, the

underlying Lisp structure must exist.

Because of this necessity, SEdit provides gaps to serve as dummy

Lisp objects during typing. SEdit does not need a gap for every

form typed in, but gaps are necessary for quoted objects. When

something is typed that requires SEdit to build a Lisp structure and

thus create a gap, as the quote character does, the gap will appear

marked for pending deletion. This means it is ready to be replaced

by the structure to be typed in. In this way it is possible to type

special structures, like quotes, directly, while SEdit maintains the

structure.

A gap looks like:

A gap displayed after a quote has been typed in would look like

this:

with the gap marked for pending deletion, ready for typein of the

object to be quoted.

16.1.5 Broken Atoms

When you are typing an atom (a symbol or a number), SEdit saves

the characters you type until you finish the atom. SEdit determines

that you’ve finished the atom when you type a character that cannot

(without being escaped) belong to an atom, such as a space or

open parenthesis. SEdit then tries to create an atom with these

characters, just as if it were the Lisp reader. If it succeeds, the

atom becomes part of the structure you’re editing. However, if it

fails, SEdit intercepts the reader error that would otherwise occur

and instead creates a special SEdit structure called a Broken-Atom.

A Broken-Atom looks and behaves in SEdit just like a normal atom,

but is printed in italics to alert you to its needing correction.

SEdit has to create a Broken-Atom when the characters typed don’t

make a legal atom. For example, the characters "DECLARE:"

cannot make a symbol because the colon is a package specifier,

B-5LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

but the form is not correct for a package-qualified symbol.

Similarly, the characters "#b123" cannot represent an integer in

base two, because 2 and 3 are not legal digits in base two, so SEdit

would make a Broken-Atom that looks like #b123.

Broken-Atoms can be edited in SEdit just like real atoms.

Whenever you finish editing a Broken-Atom, SEdit again tries to

create an atom from the characters. If it succeeds, it reprints the

atom in SEdit’s default font, rather than in italics. You should be

sure to correct any Broken-Atoms you create before exiting SEdit,

since Broken-Atoms do not behave in any useful way outside SEdit.

16.1.6 Special Characters

A few characters have special meaning in Lisp, and are treated

specially by SEdit. SEdit must always have a complete structure

to work on at any level of the edit. This means that SEdit needs a

special way to type in structures such as lists, strings, and quoted

objects. In most instances these structures can be typed in just as

they would be to a regular Exec, but in a few cases this is not

possible.

Lists- (and) Lists begin with an open parenthesis character (. Typing an open

parenthesis gives a balanced list, that is, SEdit inserts both an open

and a close parenthesis. The structure caret is between the two

parentheses. List elements can be typed in at the structure caret.

When a close parenthesis,) is typed, the caret will be moved

outside the list (and the close parenthesis), effectively finishing the

list. Square bracket characters, [and], have no special meaning in

SEdit, as they have no special meaning in Common Lisp.

Quoted Structures: SEdit handles the quote keys so that it is possible to type in all

quote forms directly. When typing one of the following quote keys

at a structure caret, the quote character typed will appear, followed

by a gap to be replaced by the object to be quoted.

Single Quote – ’ Use to enter quoted structures.

Backquote –‘ Use to enter backquoted structures.

Comma – , Use to enter comma forms, as used with a Backquote form.

At Sign – @ Use after a comma to create a comma-at-sign gap. This allows

type-in of comma-at forms, e.g. ,@list, as used within a Backquote

form.

Dot – . Use the dot (period) after a comma to create a comma-dot gap.

This allows type-in of comma-dot forms, e.g. ,.list, as used within

a Backquote form.

Hash Quote – #’ Use this two character sequence to enter the CL:FUNCTION

abbreviation hash–quote (#’).

Dotted Lists: The dot, or period, character (.) is used to type dotted lists in

SEdit. After typing a dot, SEdit inserts a dot and a gap to fill in for

the tail of the list. To dot an existing list, point the cursor between

the last and second to the last element in the list, and type a dot.

To undot a list, select the tail of the list before the dot while holding

down the SHIFT key.

B-6 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

Escape- \ or % Use to escape from a specific typed in character. Use the escape

key to enter characters, like parentheses, which otherwise have

special meaning to the SEdit reader. Press the escape key then

type in the character to escape. SEdit uses the escape key

appropriate to the environment it is editing in; it depends on the

readtable that was current when the editor was started. The

backslash key (\) is used when editing Common Lisp, and the

percent key (%) is used when editing Interlisp.

Multiple Escape- | Use the multiple escape key, the vertical bar character (|), to

escape a sequence of typed in characters. SEdit always balances

multiple escape characters. When one multiple escape character is

typed, SEdit produces a balanced pair, with the caret between

them, ready for typing in the characters to be escaped. If you type

a second vertical bar, the caret moves after the second vertical

bar, and is still within the same atom, so that you can add more

unescaped characters to the atom.

Comments- ; The comment key, a semicolon (;), starts a comment. When a

semicolon is typed, an empty comment is inserted with the caret in

position for typing in the comment. Comments can be edited like

strings. There are three levels of comments supported by SEdit:

single, double, and triple. Single semicolon comments are

formatted at the comment column, about three-quarters of the way

across the SEdit window, towards the right margin. Double

semicolon comments are formatted at the current indentation of the

code that they are in. Triple semicolon comments are formatted

against the left margin of the SEdit window. The level of a

comment can be increased or decreased by pointing after the

semicolon, and either typing another semicolon, or backspacing

over the preceding semicolon. Comments can be placed anywhere

in your Common Lisp code. However, in Interlisp code, they must

follow the placement rules for Interlisp comments.

Strings- " Enter strings in SEdit by typing a double quote ("). SEdit balances

the double quotes. When one is typed, SEdit produces a second,

with the caret between the two, ready for typing the characters of

the string. If a double quote character is typed in the middle of a

string, SEdit breaks the string into two smaller strings, leaving the

caret between them.

16.1.7 Commands

SEdit commands are most easily entered through the keyboard.

When possible, SEdit uses a named key on the keyboard, for

example, the DELETE key. The other commands are either Meta,

Control, or Meta-Contol key combinations. For the alphabetic

command keys, either uppercase or lowercase will work.

There are two menus available, as an alternative means of invoking

commands. They are the middle button popup menu, and the

attached command menu. These menus are described in more

detail below.

16.1.8 Editing Commands

Redisplay: Control-L [Editor Command]

B-7LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

Redisplays the structure being edited.
Delete Selection: DELETE [Editor Command]

Deletes the current selection.

Delete Word: Control-W [Editor Command]

Deletes the previous atom or whole structure. If the caret is in the

middle of an atom, deletes backward to the beginning of the atom

only.

Control-Meta-O [Editor Command]

Performs a fast edit by calling ED with its CURRENT option.

16.1.9 Completion Commands

Abort: Meta-A [Editor Command]

Aborts. This command must be confirmed. All changes since the

beginning of the edit session are undone, and the edit is closed.

The following commands signal completion of an edit session and

install the structure you were editing.

Control-X [Editor Command]

Signals the system that this edit is complete. The window remains

open, though, so the user can see the edit and start editing again

directly.

Control-C [Editor Command]

Signals the system that this edit is complete and compiles the

definition being edited. The variable *compile-fn* determines the

function to be called to do the compilation. See the Options section

below.

Control-Meta-X [Editor Command]

Signals the system that this edit is complete and closes the

window.

Control-Meta-C [Editor Command]

Signals the system that this edit is complete, compiles the definition

being editing, and closes the window.

16.1.10 Undo Commands

Undo: Meta-U or UNDO [Editor Command]

Undoes the last edit. All changes since the beginning of the edit

session are remembered, and can be undone sequentially.

Redo: Meta-R or AGAIN [Editor Command]

Redoes the edit change that was just undone. Redo only works

directly following an Undo. Any number of Undo commands can

be sequentially redone.

16.1.11 Find Commands

Find: Meta-F or FIND [Editor Command]

B-8 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

Finds a specified structure, or sequence of structures. If there is a

current selection, SEdit looks for the next occurrence of the

selected structure. If there is no selection, SEdit prompts for the

structure to find, and searches forward from the position of the

caret. The found structure will be selected, so the Find command

can be used to easily find the same structure again.

If a sequence of structures is selected, SEdit will look for the next

occurrence of the same sequence. Similarly, when SEdit prompts

for the structure to find, you can type a sequence of structures to

look for.

The variable *wrap-search* controls whether or not SEdit wraps

around from the end of the structure being edited and continues

searching from the beginning.

Reverse Find: Control-Meta-F [Editor Command]

Finds a specified structure, searching in reverse from the position

of the caret.

The variable *wrap-search* controls whether or not SEdit wraps

around from the beginning of the structure being edited and

continues searching from the end.

Find Gap: Meta-N or SKIP-NEXT [Editor Command]

Skips to the next gap in the structure, leaving it selected for

pending deletion.

Substitute: Meta-S or SHIFT-FIND [Editor Command]

Substitutes one structure, or sequence of structures, for another

structure, or sequence, within the current selection. SEdit prompts

you in the SEdit prompt window for the structures to replace, and

the structures to replace with.

The selection to substitute within must be a structure selection. To

get a structure selection, click with the middle mouse button (not

the left), and extend it, if necessary, with the right mouse button.

If you begin with the left button, you will get an informational

message "Select the structure to substitute within", because the

selection was of characters, rather than structures.

Delete Structure: Control-Meta-S [Editor Command]

Removes all occurences of a structure or sequence of structures

within the current selection. SEdit prompts the user in the SEdit

prompt window for the structures to delete.

16.1.12 General Commands

Arglist: Meta-H or HELP [Editor Command]

Shows the argument list for the function currently selected, or

currently being typed in, in the SEdit prompt window. If the

argument list will not fit in the SEdit prompt window, it is displayed

in the main Prompt Window.

Convert Comments: Meta-; [Editor Command]

B-9LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

Converts old style comments in the selected structure to new style

comments. This converter notices any list that begins with an

asterisk (*) in the INTERLISP package (IL:*) as an old style

comment. Section 16.1.18, Options, describes the converter

options .

Comment Out Selection: Control-Meta-; [Editor Command]

This command puts the contents of a structure selection into a

comment. This provides an easy way to "comment out" a chunk of

code. The Extract command can be used to reverse this process,

returning the comment to the structures contained therein.

Edit: Meta-O [Editor Command]

Edits the definition of the current selection. If the selected name

has more than one type of definition, SEdit asks for the type to be

edited. If the selection has no definition, a menu pops up. This

menu lets the user specify either the type of definition to be

created, or no definition if none needs to be created.

Eval: Meta-E [Editor Command]

Evaluates the current selection. If the result is a structure, the

inspector is called on it, allowing the user to choose how to look at

the result. Otherwise, the result is printed in the SEdit prompt

window. The evaluation is done in the process from which the edit

session was started. Thus, while editing a function from a break

window, evaluations are done in the context of the break.

Expand: Meta-X or EXPAND [Editor Command]

Replaces the current selection with its definition. This command

can be used to expand macros and translate CLISP.

Extract: Meta- / [Editor Command]

Extracts one level of structure from the current selection. If there is

no selection, but there is a structure caret, the list containing the

caret is used. This command can be used to strip the parentheses

off a list, or to unquote a quoted structure, or to replace a comment

with the structures contained therein.

Inspect: Meta-I [Editor Command]

Inspect the current selection.

Join: Meta-J [Editor Command]

Joins. This command joins any number of sequential Lisp objects

of the same type into one object of that type. Join is supported for

atoms, strings, lists, and comments. In addition, SEdit permits

joining of a sequence of atoms and strings, since either type can

easily be coerced into the other. In this case, the result of the Join

will be an atom if the first object in the selection is an atom,

otherwise the result will be a string.

Mutate: Meta-Z [Editor Command]

Mutates. This command allows the user to do arbitrary operations

on a LISP structure. First select the structure to be mutated (it

must be a whole structure, not an extended selection). When the

B-10 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

user presses Meta-Z SEdit prompts for the function to use for

mutating. This function is called with the selected structure as its

argument, and the structure is replaced with the result of the

mutation.

For example, an atom can be put in upper case by selecting the

atom and mutating by the function U-CASE. You can replace a

structure with its value by selecting it and mutating by EVAL.

Quote: Meta-’

Meta-‘

Meta-,

Meta-.

Meta-@ or Meta-2

Meta-# or Meta-3 [Editor Command]

Quotes the current selection with the specified kind of quote,

respectively, Single Quote, Backquote, Comma, Comma-At-Sign,

Comma-Dot, or Hash-Quote.

Normalize Selection: Meta-Space or Meta-Return [Editor Command]

Scrolls the current selection to the center of the window. Similarly,

the Space or Return key can be used to normalize the caret.

Parenthesize: Meta-) or Meta-0 [Editor Command]

Parenthesizes the current selection, positioning the caret after the

new list.

Parenthesize: Meta- (or Meta-9 [Editor Command]

Parenthesizes the current selection, positioning the caret at the

beginning of the new list. Only a whole structure selection or an

extended selection of a sequence of whole structures can be

parenthesized.

B-11LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

16.1.13 Miscellaneous

Change Print Base: Meta-B [Editor Command]

Changes Print Base. Prompts for entry of the desired Print Base,

in decimal. SEdit redisplays fixed point numbers in this new base.

Set Package: Meta-P [Editor Command]

Changes the current package for this edit. Prompts the user, in

the SEdit prompt window, for a new package name. SEdit will

redisplay atoms with respect to that package.

Attached Menu: Meta-M [Editor Command]

Attaches a menu of the commonly used commands (the SEdit

Command Menu) to the top of the SEdit window. Each SEdit

window can have its own menu, if desired.

16.1.14 Help Menu

When the mouse cursor is positioned in the SEdit title bar and the

middle mouse button is pressed, a Help Menu of commands pops

up. The menu looks like this:

B-12 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

The Help Menu lists each command and its corresponding

Command Key. (In the menu, the letter C stands for CONTROL,

while M indicates Meta.) The command selected is executed just

as if the command had been entered from the keyboard. The menu

remembers which command was selected last, and pops up with

the mouse cursor next to that same command the next time the

menu is used. This provides a very fast way to repeat the same

command when using the mouse.

16.1.15 Command Menu

The SEdit Attached Command Menu contains the commonly used

commands. Use the Meta-M keyboard command to bring up this

menu. The menu can be closed, independently of the SEdit

window, when desired. The menu looks like:

All of the commands in the menu function identically to their

corresponding keyboard commands, except for Find and

Substitute.

When Find is selected with the mouse cursor, SEdit prompts in the

menu window, next to the Find button, for the structures to find.

Type in the structures then select Find again. The search begins

from the caret position in the SEdit window.

Similarly, Substitute prompts, next to the Find button, for the

structures to find, and next to the Substitute button for the

structures to substitute with. After both have been typed in,

selecting Substitute replaces all occurrences of the Find structures

with the Substitute structures, within the current selection.

To do a confirmed substitute, set the edit point before the first

desired substitution, and select Find. Then if you want to substitute

that occurrence of the structure, select Substitute. Otherwise,

select Find again to go on.

Selecting either Find or Substitute with the right mouse button

erases the old structure to find or substitute from the menu, and

prompts for a new one.

16.1.16 SEdit Programmer’s Interface

The following sections describe SEdit’s programmer’s interface.

All symbols are external in the package named "SEdit".

16.1.17 SEdit Window Region Manager

SEdit provides user redefinable functions which control how SEdit

chooses the region for a new edit window.

B-13LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

(get-window-region context reason name type) [Function]

This function is called when SEdit wants to know where to place a

window it is about to open. This happens whenever the user starts

a new SEdit or expands an Sedit icon.The default behavior is to

pop a window region off SEdit’s stack of regions that have been

used in the past. If the stack is empty, SEdit prompts for a new

region.

This function can be redefined to provide different behavior. It is

called with the edit context, a reason for needing a region, the

name of the structure to be edited, and the type of the structure to

be edited. The edit context is SEdit’s main data structure and can

be useful for associating particular edits with specific regions. The

reason argument specifies why SEdit wants a region, and will be

one of the keywords :CREATE or :EXPAND.

(save-window-region context reason name type region) [Function]

This function is called whenever SEdit is finished with a region and

wants to make the region available for other SEdits. This happens

whenever an SEdit window is closed or shrunk, or when an SEdit

Icon is closed. The default behavior is simply to push the region

onto SEdit’s stack of regions.

This function can be redefined to provide different behavior. It is

also called with the edit context, the reason, the name, the type,

and additionally the window region that is being released. The

reason argument specifies why SEdit is releasing the region, and

will be one of the keywords :CLOSE, :SHRINK, or :CLOSE-ICON.

keep-window-region [Variable]

Default T. This flag determines the behavior of the default SEdit

region manager, explained above, for shrinking and expanding

windows. When set to T, shrinking an SEdit window will not give

up that window’s region; the icon will always expand back into the

same region. When set to NIL, the window’s region is made

available for other SEdits when the window is shrunk. Then when

an SEdit icon is expanded, the window will be reshaped to the next

available region.

This variable is only used by the default implementations of the

functions get-window-region and save-window-region. If these

functions are redefined, this flag is no longer used.

16.1.18 Options

The following parameters can be set as desired.

wrap-parens [Variable]

This SEdit pretty printer flag determines whether or not trailing

close parenthesis characters,), are forced to be visible in the

window without scrolling. By default it is set to NIL, meaning that

close parens are allowed to "fall off" the right edge of the window.

If set to T, the pretty printer will start a new line before the structure

preceding the close parens, so that all the parens will be visible.

wrap-search [Variable]

B-14 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

This flag determines whether or not SEdit find will wrap around to

the top of the structure when it reaches the end, or vice versa in the

case of reverse find. The default is NIL.

clear-linear-on-completion [Variable]

This flag determines whether or not SEdit completely re-pretty

prints the structure being edited when you complete the edit. The

default value is NIL, meaning that SEdit reuses the pretty printing.

ignore-changes-on-completion [Variable]

Sometimes the structure that you are editing is changed by the

system upon completion. Editdates are an example of this

behavior. When this flag is NIL, the default, SEdit will redisplay the

new struct ure, capturing the changes. When T, SEdit will ignore

the fact that changes were made by the system and keep the old

structure.

convert-upgrade [Variable]

Default 100. When using Meta-; to convert old-style single- asterisk

comments, if the length of the comment exceeds convert-upgrade

characters, the comment is converted into a double semicolon

comment. Otherwise, the comment is converted into a single

semicolon comment.

Old-style double-asterisk comments are always converted into new-

style triple-semicolon comments.

16.1.19 Control Functions

(reset) [Function]

This function recomputes the SEdit edit environment. Any changes

made in the font profile, or any changes made to SEdit’s

commands are captured by resetting. Close all SEdit windows

before calling this function.

(add-command key-code form &optional scroll? key-name command-name help-string)

[Function]

This function allows you to write your own SEdit keyboard

commands. You can add commands to new keys, or you can

redefine keys that SEdit already uses as command keys. If you

mistakenly redefine an SEdit command, the funtion Reset-

Commands will remove all user-added commands, leaving SEdit

with its default set of commands.

key-code can be a character code, or any form acceptible to

il:charcode.

form determines the function to be called when the key command is

typed. It can be a symbol naming a function, or a list, whose first

element is a symbol naming a function and the rest of the elements

are extra arguments to the function. When the command is

invoked, SEdit will apply the function to the edit context (SEdit’s

main data structure), the charcode that was typed, and any extra

arguments supplied in form. The extra arguments do not get

evaluated, but are useful as keywords or flags, depending on how

the command was invoked. The command function must return T if

B-15LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

it handled the command. If the function returns NIL, SEdit will

ignore the command and insert the character typed.

The first optional argument, scroll?, determines whether or not

SEdit scrolls the window after running the command. This

argument defaults to NIL, meaning don’t scroll. If the value of

SCROLL is T, then SEdit will scroll the window to ensure that the

caret is visible.

The rest of the optional arguments are used to add this command

to SEdit’s middle button menu. When the item is selected from the

menu, the command function will be called as described above,

with the charcode argument set to NIL.

key-name is a string to identify the key (combination) to be typed to

invoke the command. For example "M-A" to represent the Meta-A

key combination, and "C-M-A" for Control-Meta-A.

command-name is a string to identify the command function, and

will appear in the menu next to the key-name.

help-string is a string to be printed in the prompt window when a

mouse button is held down over the menu item.

After adding all the commands that you want, you must call Reset-

Commands to install them.

For example:

(add-command "↑U" (my-change-case t))

(add-command "↑Y" (my-change-case nil))

(add-command "1,r" my-remove-nil

 "M-R" "Remove NIL"

 "Remove NIL from the selected structure"))

(reset-commands)

will add three commands. Suppose my-change-case takes the

arguments context, charcode, and upper-case?. upper-case? will

be set to T when my-change-case is called from Control-U, and

NIL when called from Control-Y. my-remove-nil will be called

with only context and charcode arguments when Meta-R is typed.

Below are some SEdit functions which are useful in writing new

commands.

(reset-commands) [Function]

This function installs all commands added by add-command.

SEdits which are open at the time of the reset-commands will not

see the new commands; only new SEdits will have the new

commands available.

(default-commands) [Function]

This function removes all commands added by add-command,

leaving SEdit with its default set of commands. As in reset-
commands, open SEdits will not be changed; only new SEdits will

have the user commands removed.

B-16 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

(get-prompt-window context) [Function]

This function returns the attached prompt window for a particular

SEdit.

(get-selection context) [Function]

This function returns two values: the selected structure, and the

type of selection, one of NIL, T, or :SUB-LIST. The selection type

NIL means there is not a valid selection (in this case the structure is

meaningless). T means the selection is one complete structure.

:SUB-LIST means a series of elements in a list is selected, in which

case the structure returned is a list of the elements selected.

(replace-selection context structure selection-type) [Function]

This function replaces the current selection with a new structure, or

multiple structures, by deleting the selection and then inserting the

new structure(s). The selection-type argument must be one of T or

:SUB-LIST. If T the structure is inserted as one complete structure.

If :SUB-LIST, the structure is treated as a list of elements, each of

which is insertd.

edit-fn [Variable]

This function is funcalled with the selected structure and the edit

options as its arguments from the Edit (M-O) command. It should

start the editor as appropriate, or else generate an error if the

selection is not editable.

compile-fn [Variable]

This function is funcalled with the arguments name, type, and body,

from the compile completion commands. It should compile the

definition, body, and install the code as appropriate.

(sedit structure props options) [Function]

This function provides a means of starting SEdit directly. structure

is the structure to be edited.

props is a property list, which may specify the following properties:

:name - the name of the object being edited

:type - the file manager type of the object being edited. If NIL,

SEdit will not call the file manager when it tries to refetch the

definition it is editing. Instead, it will just continue to use the

structure that it has.

:completion-fn - the function to be called when the edit session is

completed. This function is called with the context, structure,

and changed? arguments. context is SEdits main data

structure. structure is the structure being edited. changed?

specifies if any changes have been made, and is one of NIL,

T, or :ABORT, where :ABORT means the user is aborting the

edit and throwing away any changes made. If the value of

this property is a list, the first element is treated as the

function, and the rest of the elements are extra arguments

that the function is applied to following the main arguments

above.

B-17LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

:root-changed-fn - the function to be called when the entire

structure being edited is replaced with a new structure. This

function is called with the new structure as its argument. If the

value of this property is a list, the first element is treated as

the function, and the rest of the elements are extra arguments

that the function is applied to following the structure argument.

options is one or a list of any number of the followng keywords:

:close-on-completion - This option specifies that SEdit cannot

remain active for multiple completions. That is, the SEdit

window cannot be shrunk, and the completion commands that

normally leave the window open will in this case close the

window and terminate the edit.

:compile-on-completion - This option specifies that SEdit should

call the *compile-fn* to compile the definition being edited

upon completion, regardless of the completion command

used.

Warning with Declarations

CAUTION: There is a feature of the BYTECOMPILER that is not

supported by SEdit or the XCL compiler. It is possible to insert a

comment at the beginning of your function that looks like

(* DECLARATIONS: --)

The tail, or -- section, of this comment is taken as a set of local

record declarations which are then used by the compiler in that

function just as if they had been declared globally. See the

"Compiler" section in Chapter 3 of these Notes for additional

behavior in XCL.

SEdit does not recognize such declarations. Thus, if the "Expand"

command is used, the expansion will not be done with these

record declarations in effect. The code that you see in SEdit will

not be the same code compiled by the BYTECOMPILER.

B-18 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

[This page intentionally left blank]

