
A-1LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A. THE EXEC

In most Common Lisp implementations, there is a "top-level read-
eval-print loop," which reads an expression, evaluates it, and prints
the results. In Xerox Common Lisp, the Exec acts as the top-level
loop, but in addition to read-eval-print, it also performs a number
of other tasks, and allows a much greater range of inputs. This
appendix contains information from the Lyric and Medley releases.
Medley additions are indicated with revision bars in the right
margin.

The Exec is based on concepts from the Interlisp Programmer’s
Assistant (see the Interlisp-D Reference Manual).

The Exec traps all throws, and recovers gracefully. It prints all
values resulting from evaluation, on separate lines. When zero
values are returned, nothing is printed.

The Exec keeps track of your previous input, in a structure called
the history list. A history list is a list of the information associated
with each of the individual events that have occurred, where each
event corresponds to one input. Associated with each event on the
history list is the input, its values, plus other optional information
such as side-effects, formatting information, etc.

The following dialogue contains illustrative examples and gives the
flavor of the use of the Exec. Be sure to type these examples to an
Exec whose *PACKAGE* is set to the XCL-USER package. The
Exec that Lisp starts up with is set to the XCL-USER package.
Each prompt consists of an event number and a prompt character
(">").

12>(setq foo 5)
5

13>(setq foo 10)
10

14>undocr

SETQ undone.
15>foocr

5

This is an example of direct communication with the Exec. You

have instructed the Exec to undo the previous event.

. . .

25>set(lst1 (a b c))

(A B C)

26>(setq lst2 ’(d e f))

(D E F)

27>(mapc #’(lambda (x) (setf (get x ’myprop) t)) lst1)

(A B C)

The Exec accepts input both in APPLY format (the SET) and EVAL

format (the SETQ.) In event 27, the user adds a property MYPROP

to the symbols A, B, and C.

28>use lst2 for lst1 in 27cr

A-2 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

NIL

You just instructed the Exec to go back to event number 27,

substitute LST2 for LST1, and then re-execute the expression.

You could have also used -2 instead of 27, specifying a relative

address.

.

.

.

46>(setf my-hash-table (make-hash-table))

#<Hash-Table @ 66,114034>

47>(setf (gethash ’foo my-hash-table) (string ’foo))
"FOO"

If STRING were computationally expensive (which it is not), then

you might be caching its value for later use.

48>use fie for foo in stringcr

"FIE"

You now decide you would like to redo the SETF with a different

value. You specify the event using "IN STRING" rather than SETF.

49>?? usecr

USE FIE FOR FOO IN STRING
48> (SETF (GETHASH ’FIE MY-HASH-TABLE)

(STRING ’FIE))
"FIE"

Here you ask the Exec (using the ?? command) what it has on its

history list for the last input. Since the event corresponds to a

command, the Exec displays both the original command and the

generated input.

The most common interaction with the Exec occurs at the top level
or in the debugger, where you type in expressions for evaluation,
and see the values printed out. In this mode, the Exec acts much
like a standard Common Lisp top-level loop, except that before
attempting to evaluate an input, the Exec first stores it in a new
entry on the history list. Thus if the operation is aborted or causes
an error, the input is still saved and available for modification and/or
re-execution. The Exec also notes new functions and variables to
be added to its spelling lists to enable future corrections.

After updating the history list, the Exec executes the computation
(i.e., evaluates the form or applies the function to its arguments),
saves the value in the entry on the history list corresponding to the
input, and prints the result. Finally the Exec displays a prompt to
indicate it is again ready for input.

Input Formats

The Exec accepts three forms of input: an expression to be
evaluated (EVAL-format), a function-name and arguments to apply
it to (APPLY-format), and Exec commands, as follows:

EVAL-format input If you type a single expression, either followed by a carriage-return,
or, in the case of a list, terminated with balanced parenthesis, the
expression is evaluated and the value is returned. For example, if
the value of the variable FOO is the list (A B C):

A-3LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

32>FOOcr
(A B C)

Similarly, if you type a Lisp expression, beginning with a left
parenthesis and terminated by a matching right parenthesis, the
form is simply passed to EVAL for evaluation. Notice that it is not
necessary to type a carriage return at the end of such a form; the
reader will supply one automatically. If a carriage-return is typed
before the final matching right parenthesis or bracket, it is treated
the same as a space, and input continues. The following examples
are interpreted identically:

123> (+ 1 (* 2 3))
7

124> (+ 1 (*cr
2 3))
7

APPLY-format input Often, when typing at the keyboard, you call functions with constant
argument values, which would have to be quoted if you typed them
in "EVAL-format." For convenience, if you type a symbol
immediately followed by a list form, the symbol is APPLYed to the
elements within the list, unevaluated. The input is terminated by
the matching right parenthesis. For example, typing LOAD(FOO) is
equivalent to typing (LOAD ’FOO), and GET(X COLOR) is
equivalent to (GET ’X ’COLOR). As a simple special case, a single
right parenthesis is treated as a balanced set of parentheses, e.g.

125>UNBREAK)

is equivalent to

125>UNBREAK()

The reader will only supply the "carriage return" automatically if no
space appears between the initial symbol and the list that follows; if
there is a space after the initial symbol on the line and the list that
follows, the input is not terminated until a carriage return is explicitly
typed.

Note that APPLY-format input cannot be used for macros or special
forms.

Exec commands The Exec recognizes a number of commands, which usually refer
to past events on the history list. These commands are treated
specially; for example, they may not be put on the history list. The
format of a command is always a line beginning with the command
name. (The Exec looks up the command name independent of
package, so that Exec commands are package independent.) The
remainder of the line, if any, is treated as "arguments" to the
command. For example,

128>UNDOcr

mapc undone

129>UNDO (FOO --)cr

foo undone

are all valid command inputs.

Multiple Execs and the Exec’s Type

Multiple Execs More than one Exec can be active at any one time. New Execs can
be created by selecting the Exec menu item in the background pop-

A-4 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

up menu. When a prompt is printed for an event in other than the
first Exec, the prompt is preceded with the Exec number; for
example:

2/50>

might be a prompt in Exec 2. All Execs share the same history list,
but each event records which Exec it goes with. That is, although a
single global list exists, the Xerox Lisp history system maintains the
separate threads of control within each Exec.

Exec type Several variables are very important to an Exec since they control
the format of reading and printing. Together these variables
describe a type of exec. Put another way, this is the Exec’s mode.
To allow easier setting of these modes some standard bindings for
the variables have been named. The names provide the user an
Exec of the Common Lisp (CL), Interlisp (IL) or Xerox Extended
Common Lisp (XCL) type. An Exec’s type is usually displayed in
the title bar of its window in parentheses:

Event Specification

Exec commands, like UNDO, frequently refer to previous events in
the session’s history. All Exec commands use the same
conventions and syntax for indicating which event(s) the command
refers to. This section shows you the syntax used to specify
previous events.

An event address identifies one event on the history list. For
example, the event address 42 refers to the event with event
number 42, and -2 refers to two events back in the current Exec.
Usually, an event address will contain only one or two commands.

Event addresses can be concatenated. For example, if FOO refers
to event N, FOO FIE will refer to the first event before event N
which contains FIE.

The symbols used in event addresses (such as AND, F, =, etc. are
compared with STRING-EQUAL, so that it does not matter what
the current package is when you type an event address symbol to
an Exec.

Event addresses are interpreted as follows:

N (an integer) If N is positive, it refers to the event with event number N (no matter
which Exec the event occurred in.) If N is negative, it always refers
to the event -N events backwards counting only events belonging to
the current Exec.

A-5LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

F Specifies that the next object in the event address is to be searched
for, regardless of what it is. For example, F -2 looks for an event
containing -2.

= Specifies that the next object is to be searched for in the values of
events, instead of the inputs.

SUCHTHAT PRED Specifies an event for which the function PRED returns true. PRED
should be a function of two arguments, the input portion of the
event, and the event itself.

PAT Any other event address command specifies an event whose input
contains an expression that matches PAT. When multiple Execs
are active, all events are searched, no matter which Exec they
belong to. The pattern can be a simple symbol, or a more complex
search pattern.

Note: Specifications used below of the form EventAddressi refer to

event addresses, as described above. Since an event
address may contain multiple words, the event address is
parsed by searching for the words which delimit it. For
example, in EventAddress1 AND EventAddress2, the

notation EventAddress1 corresponds to all words up to the

AND in the event specification, and EventAddress2 to all

words after the AND in the event specification.

FROM EventAddress All events since EventAddress, inclusive. For example, if there is a
single Exec and the current event is number 53, then FROM 49
specifies events 49, 50, 51, and 52. FROM will include events from
all Execs.

 ALL EventAddress Specifies all events satisfying EventAddress. For example, ALL
LOAD, ALL SUCHTHAT FOO-P.

empty If nothing is specified, it is the same as specifying -1, i.e., the last
event in the current Exec.

EventSpec1 AND EventSpec2 AND . . . AND EventSpecN

Each of the EventSpeci is an event specification. The lists of

events are concatenated. For example, ALL MAPC AND ALL
STRING AND 32 specifies all events containing MAPC, all
containing STRING, and also event 32. Duplicate events are
removed.

Exec Commands

All Exec commands are input as lines which begin with the name of
the command. The name of an Exec command is not a symbol and
therefore is not sensitive to the setting of the current package (the
value of *PACKAGE*).

EventSpec is used to denote an event specification which in most
cases will be either a specific event address (e.g., 42) or a relative
one (e.g., -3). Unless specified otherwise, omitting EventSpec is
the same as specifying EventSpec=-1. For example, REDO and
REDO -1 are the same.

A-6 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

REDO EventSpec [Exec command]

Redoes the event or events specified by EventSpec. For example,
REDO 123 redoes the event numbered 123.

RETRY EventSpec [Exec command]

Similar to REDO except sets the debugger parameters so that any
errors that occur while executing EventSpec will cause breaks.

USE NEW [FOR OLD] [IN EventSpec] [Exec command]

Substitutes NEW for OLD in the events specified by EventSpec,
and redoes the result. NEW and OLD can include lists or symbols,
etc.

For example, USE SIN (- X) FOR COS X IN -2 AND -1 will
substitute SIN for every occurrence of COS in the previous two
events, and substitute (- X) for every occurrence of X, and
reexecute them. (The substitutions do not change the previous
information saved about these events on the history list.)

If IN EventSpec is omitted, the first member of OLD is used to
search for the appropriate event. For example, USE
DEFAULTFONT FOR DEFLATFONT is equivalent to USE
DEFAULTFONT FOR DEFLATFONT IN F DEFLATFONT. The F
is inserted to handle correctly the case where the first member of
OLD could be interpreted as an event address command.

If OLD is omitted, substitution is for the "operator" in that command.
For example FBOUNDP(FF) followed by USE CALLS is equivalent
to USE CALLS FOR FBOUNDP IN -1.

If OLD is not found, USE will print a question mark, several spaces
and the pattern that was not found. For example, if you specified
USE Y FOR X IN 104 and X was not found, "X ?" is printed to the
Exec.

You can also specify more than one substitution simultaneously as
follows:

USE NEW1 FOR OLD1 AND ... AND NEWN FOR OLDN [IN EventSpec [Exec command]

Note: The USE command is parsed by a small finite state parser to
distinguish the expressions and arguments. For example,
USE FOR FOR AND AND AND FOR FOR will be parsed
correctly.

Every USE command involves three pieces of information: the
expressions to be substituted, the arguments to be substituted for,
and an event specification that defines the input expression in
which the substitution takes place. If the USE command has the
same number of expressions as arguments, the substitution
procedure is straightforward. For example, USE X Y FOR U V
means substitute X for U and Y for V, and is equivalent to USE X
FOR U AND Y FOR V.

However, the USE command also permits distributive substitutions
for substituting several expressions for the same argument. For

A-7LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

example, USE A B C FOR X means first substitute A for X then
substitute B for X (in a new copy of the expression), then substitute
C for X. The effect is the same as three separate USE commands.

Similarly, USE A B C FOR D AND X Y Z FOR W is equivalent to
USE A FOR D AND X FOR W, followed by USE B FOR D AND Y
FOR W, followed by USE C FOR D AND Z FOR W. USE A B C
FOR D AND X FOR Y also corresponds to three substitutions, the
first with A for D and X for Y, the second with B for D, and X for Y,
and the third with C for D, and again X for Y. However, USE A B C
FOR D AND X Y FOR Z is ambiguous and will cause an error.

Essentially, the USE command operates by proceeding from left to
right handling each AND separately. Whenever the number of
expressions exceeds the number of expressions available, multiple
USE expressions are generated. Thus USE A B C D FOR E F
means substitute A for E at the same time as substituting B for F,
then in another copy of the indicated expression, substitute C for E
and D for F. This is also equivalent to USE A C FOR E AND B D
FOR F.

Note: The USE command correctly handles the situation where
one of the old expressions is the same as one of the new
ones, USE X Y FOR Y X, or USE X FOR Y AND Y FOR X.

? &OPTIONAL NAME [Exec command]

If NAME is not provided describes all available Exec commands by
printing the name, argument list, and description of each. With
NAME, only that command is described.

?? EventSpec [Exec command]

Prints the most recent event matching the given EventSpec.

CONN DIRECTORY [Exec command]

Changes default pathname to DIRECTORY.

DA [Exec command]

Returns current date and time.

DIR &OPTIONAL PATHNAME &REST KEYWORDS [Exec command]

Shows a directory listing for PATHNAME or the connected
directory. If provided, KEYWORDS indicate information to be
displayed for each file. Some keywords are: AUTHOR, AU,
CREATIONDATE, DA, etc.

DO-EVENTS &REST INPUTS &ENVIRONMENT ENV [Exec command]

DO-EVENTS is intended as a way of putting together several
different events, which can include commands. It executes the
multiple INPUTS as a single event. The values returned by the
DO-EVENTS event are the concatenation of the values of the
inputs. An input is not an EventSpec, but a call to a function or

A-8 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

command. If ENV is provided it is a lexical environment in which all
evaluations (functions and commands) will take place. Event
specification in the INPUTS should be explicit, not relative, since
referring to the last event will reinvoke the executing DO-EVENTS
command.

FIX &REST EventSpec [Exec command]

Edits the specified event prior to reexecuting it. If the number of
characters in the Fixed line is less than the variable
TTYINFIXLIMIT then it will be edited using TTYIN, otherwise the
Lisp editor is called via EDITE.

FORGET &REST EventSpec [Exec command]

Erases UNDO information for the specified events.

NAME COMMAND-NAME &OPTIONAL ARGUMENTS &REST EVENT-SPEC [Exec command]

Defines a new command, COMMAND-NAME, and its
ARGUMENTS, containing the events in EVENT-SPEC.

NDIR &OPTIONAL PATHNAME &REST KEYWORDS [Exec command]

Shows a directory listing for PATHNAME or the connected directory
in abbreviated format. If provided, KEYWORDS indicate
information to be displayed for each file. Some keywords are:
AUTHOR, AU, CREATIONDATE, DA, etc.

PL SYMBOL [Exec command]

Prints the property list of SYMBOL in an easy to read format.

REMEMBER &REST EVENT-SPEC [Exec command]

Tells File Manager to remember type-in from specified event(s) ,
EVENT-SPEC , as expressions to save.

SHH &REST LINE [Exec command]

Executes LINE without history list processing.

UNDO &REST EventSpec [Exec command]

Undoes the side effects of the specified event (see below under
"Undoing").

PP &OPTIONAL NAME &REST TYPES [Exec command]

Shows (prettyprinted) the definitions for NAME specified by TYPES.

SEE &REST FILES [Exec command]

Prints the contents of FILES in the Exec window, hiding comments.

A-9LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

SEE* &REST FILES [Exec command]

Prints the contents of FILES in the Exec window, showing
comments.

TIME FORM &KEY REPEAT &ENVIRONMENT ENV [Exec command]

Times the evaluation of FORM in the lexical environment ENV,
repeating REPEAT number of times. Information is displayed in the
Exec window.

TY &REST FILES [Exec command]

Exactly like the TYPE Exec command.

TYPE &REST FILES [Exec command]

Prints the contents of FILES in the Exec window, hiding comments.

Variables

A number of variables are provided for convenience in the Exec.

IL:IT [Variable]

Whenever an event is completed, the global value of the variable IT
is reset to the event’s value. For example,

312>(SQRT 2)
1.414214
313>(SQRT IL:IT)
1.189207

Following a ?? command, IL:IT is set to the value of the last event
printed. The inspector has an option for setting the variable IL:IT to
the current selection or inspected object, as well. The variable IL:IT
is global, and is shared among all Execs. IL:IT is a convenient
mechanism for passing values from one process to another.

Note: IT is in the INTERLISP package and these examples are
intended for an Exec whose *PACKAGE* is set to XCL-
USER. Thus, IT must be package qualified (the IL:).

The following variables are maintained independently by each
Exec. (When a new Exec is started, the initial values are NIL, or, for
a nested Exec, the value for the "parent" Exec. However, events
executed under a nested Exec will not affect the parent values.)

CL:- [Variable]

CL:+ [Variable]

CL:++ [Variable]

CL:+++ [Variable]

While a form is being evaluated by the Exec, the variable - is bound
to the form, CL:+ is bound to the previous form, CL:++ the one

A-10 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

before, etc. If the input is in apply-format rather than eval-format,
the value of the respective variable is just the function name.

CL:* [Variable]

CL:** [Variable]

CL:*** [Variable]

While a form is being evaluated by the Exec, the variable CL:* is
bound to the (first) value returned by the last event, CL:** to the
event before that, etc. The variable CL:* differs from IT in that IT is
global while each separate Exec maintains its own copy of CL:*,
CL:** and CL:***. In addition, the history commands change IT, but
only inputs which are retained on the history list can change CL:*.

CL:/ [Variable]

CL:// [Variable]

CL:/// [Variable]

While a form is being evaluated by an Exec, the variable CL:/ is
bound to a list of the results of the last event in that Exec, CL:// to
the values of the event before that, etc.

Fonts in the Exec

The Exec can use different fonts for displaying the prompt, user’s
input, intermediate printout, and the values returned by evaluation.
The following variables control the Exec’s font use:

PROMPTFONT [Variable]

Font used for printing the event prompt.

INPUTFONT [Variable]

Font used for echoing user’s type-in.

PRINTOUTFONT [Variable]

Font used for any intermediate printing caused by execution of a
command or evaluation of a form. Initially the same as
DEFAULTFONT.

VALUEFONT [Variable]

Font used to print the values returned by evaluation of a form.
Initially the same as DEFAULTFONT.

A-11LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

Changing the Exec

(CHANGESLICE N HISTORY —) [Function]

Changes the time-slice of the history list HISTORY to N. If NIL,
HISTORY defaults to the top level history LISPXHISTORY.

Note: The effect of increasing the time-slice is gradual: the history
list is simply allowed to grow to the corresponding length
before any events are forgotten. Decreasing the time-slice
will immediately remove a sufficient number of the older
events to bring the history list down to the proper size.
However, CHANGESLICE is undoable, so that these events
are (temporarily) recoverable. Therefore, if you want to
recover the storage associated with these events without
waiting N more events until the CHANGESLICE event drops
off the history list, you must perform a FORGET command.

Defining New Commands

You can define new Exec commands using the
XCL:DEFCOMMAND macro.

(XCL:DEFCOMMAND NAME ARGUMENT-LIST &REST BODY) [Macro]

XCL:DEFCOMMAND is similar to XCL:DEFMACRO, but defines
new Exec commands. The ARGUMENT-LIST can have keywords,
defstructure, and use all of the features of macro argument lists.
When NAME is subsequently typed to the Exec, the rest of the line
is processed like the arguments to a macro, and the BODY is
executed. XCL:DEFCOMMAND is a definer; the File Manager will
remember typed-in definitions and allow them to be saved, edited
with EDITDEF, etc.

There are actually three kinds of commands that can be defined,
:EVAL, :QUIET, and :INPUT. Commands can also be marked as
only for the debugger, in which case they are labelled as
:DEBUGGER. The command type is noted by supplying a list for
the NAME argument to XCL:DEFCOMMAND, where the first
element of the list is the command name, and the other elements
are keyword(s) for the command type and, optionally :DEBUGGER.

Note: The documentation string in user defined Exec commands
is automatically added to the documentation descriptions
by the CL:DOCUMENTATION function under the
COMMANDS type and can be shown using the ? Exec
command.

:EVAL This is the default. The body of the command just gets executed,
and its value is the value of the event. For example (in an XCL
Exec),

A-12 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

(DEFCOMMAND (LS :EVAL)
(&OPTIONAL (NAMESTRING *DEFAULT-PATHNAME-DEFAULTS*)
&REST DIRECTORY-KEYWORDS)
(MAPC

#’(LAMBDA (PATHNAME) (FORMAT T "~&~A" (NAMESTRING PATHNAME)))
(APPLY #’DIRECTORY NAMESTRING DIRECTORY-KEYWORDS))

(VALUES))

would define the LS command to print out all file names that match
the input namestring. The (VALUES) means that no value will be
printed by the event, only the intermediate output from the
FORMAT.

:QUIET These commands are evaluated, but neither your input nor the
results of the command are stored on the history list. For example,
the ?? and SHH commands are quiet.

:INPUT These commands work more like macros, in that the result of
evaluating the command is treated as a new line of input. The FIX
command is an input command. The result is treated as a line; a
single expression in EVAL-format should be returned as a list of the
expression to EVAL.

The new Exec now will not consider unparenthesized input with
more than one argument to be in apply format. This is the same
behavior as the older execs, e.g.:

list(1) ; is apply format (executes after close paren is typed)

list (1) ; is apply format (second arg is a list, no trailing args
given)

list ’(1) 2 3 ; is NOT apply format, arguments are evaluated

list 1 2 3 ; is NOT apply format, arguments are evaluated

list 1 ; not legal input: second argument is not a list

Undoing

Note: This discussion only applies to undoing under the Exec,
Debugger and within the UNDOABLY macro; editors handle
undoing in a different fashion.

The UNDO facility allows recording of destructive changes such
that they can be played back to restore a previous state. There are
two kinds of UNDOing: one is done by the Exec, the other is
available for use in a programmer’s code. Both methods share
information about what kind of operations can be undone and
where the changes are recorded.

Undoing in the Exec

UNDO EventSpec [Exec command]

The Exec’s UNDO command is implemented by watching the
evaluation of forms and requiring undoable operations in that
evaluation to save enough information on the history list to reverse
their side effects. The Exec simply executes operations, and any
undoable changes that occur are automatically saved on the history
list by the responsible functions. The UNDO command works on

A-13LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

itself the same way: it recovers the saved information and performs
the corresponding inverses. Thus, UNDO is effective on itself, so
that you can UNDO an UNDO, and UNDO that, etc.

Only when you attempt to undo an operation does the Exec check
to see whether any information has been saved. If none has been
saved, and you have specifically named the event you want
undone, the Exec types nothing saved. (When you just type
UNDO, the Exec only tries to undo the last operation.)

UNDO watches evaluation using CL:EVALHOOK (thus, calling
CL:EVALHOOK cannot be undone). Each form given to EVAL is
examined against the list LISPXFNS to see if it has a
corresponding undoable version. If an undoable version of a call is
found, it is called with the same arguments instead of the original.
Therefore, before evaluating all subforms of your input, the Exec
substitutes the corresponding undoable call for any destructive
operation. For example, if you type (DEFUN FOO ...), undoable
versions of the forms that set the definition into the symbol function
cell are evaluated. FOO’s function definition itself is not made
undoable.

Undoing in Programs

There are two ways to make a program undoable. The simplest
method is to wrap the program’s form in the UNDOABLY macro.
The other is to call undoable versions of destructive operations
directly.

(XCL:UNDOABLY &REST FORMS) [Macro]

Executes the forms in FORMS using undoable versions of all
destructive operations. This is done by "walking" (see
WALKFORM) all of the FORMS and rewriting them to use the
undoable versions of destructive operations (LISPXFNS makes the
association).

(STOP-UNDOABLY &REST FORMS) [Macro]

Normally executes as PROGN; however, within an UNDOABLY
form, explicitly causes FORMS not to be done undoably. Turns off
rewriting of the FORMS to be undoable inside an UNDOABLY
macro.

Undoable Versions of Common Functions

Efficiency and overhead are serious considerations for the
execution of a user program. Thus, the programmer may need
more control over the saving of undo information than that provided
by the UNDOABLY macro.

To make a function undoable, you can simply substitute the
corresponding undoable function if you want to make a destructive
operation in your own program undoable. When the undoable
function is called, it will save the undo information in the current
event on the history list.

A-14 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

Various operations, most notably SETF, have undoable versions.
The following undoable macros are initially available:

UNDOABLY-POP

UNDOABLY-PUSH

UNDOABLY-PUSHNEW

UNDOABLY-REMF

UNDOABLY-ROTATEF

UNDOABLY-SHIFTF

UNDOABLY-DECF

UNDOABLY-INCF

UNDOABLY-SET-SYMBOL

UNDOABLY-MAKUNBOUND

UNDOABLY-FMAKUNBOUND

UNDOABLY-SETQ

XCL:UNDOABLY-SETF

UNDOABLY-PSETF

UNDOABLY-SETF-SYMBOL-FUNCTION

UNDOABLY-SETF-MACRO-FUNCTION

Note: Many destructive Common Lisp functions do not currently
have undoable versions, e.g., CL:NREVERSE, CL:SORT,
etc. The current list of undoable functions is saved on the
association list LISPXFNS.

Modifying the UNDO Facility

You will usually wish to extend the UNDO facility after creating a
form whose side effects it might be desirable to undo, for instance a
file renaming function.

An undoable version of the function needs to be written. This can
be done by explicitly saving previous state information away, or by
renaming calls in the function to their undoable equivalent. Undo
information should be saved on the history list using
IL:UNDOSAVE.

You must then hook the undoable version of the function into the
undo facility. You do this by either using the IL:LISPXFNS
association list, or in the case of a SETF modifier, on the
IL:UNDOABLE-SETF-INVERSE property of the SETF function.

LISPXFNS [Variable]

Contains an association list which maps from destructive
operations to their undoable form. Initially this list contains:

((CL:POP . UNDOABLY-POP)

 (CL:PSETF . NDOABLY-PSETF)

 (CL:PUSH . UNDOABLY-PUSH)

 (CL:PUSHNEW . UNDOABLY-PUSHNEW)

 ((CL:REMF) . UNDOABLY-REMF)

 (CL:ROTATEF . UNDOABLY-ROTATEF)

A-15LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

 (CL:SHIFTF . UNDOABLY-SHIFTF)

 (CL:DECF . UNDOABLY-DECF)

 (CL:INCF . UNDOABLY-INCF)

 (CL:SET . UNDOABLY-SET-SYMBOL)

 (CL:MAKUNBOUND . UNDOABLY-MAKUNBOUND)

 (CL:FMAKUNBOUND . UNDOABLY-FMAKUNBOUND)

. . . plus the original Interlisp undo associations)

(XCL:UNDOABLY-SETF PLACE VALUE ...) [Macro]

Like CL:SETF but saves information so it may be undone.
UNDOABLY-SETF uses undoable versions of the setf function
located on the UNDOABLE-SETF-INVERSE property of the
function being SETFed. Initially these SETF names have such a
property:

CL:SYMBOL-FUNCTION - UNDOABLY-SETF-SYMBOL-
FUNCTION

CL:MACRO-FUNCTION - UNDOABLY-SETF-MACRO-
FUNCTION

(UNDOABLY-SETQ &REST FORMS) [Function]

Typed-in SETQs (and SETFs on symbols) are made undoable by
substituting a call to UNDOABLY-SETQ. UNDOABLY-SETQ
operates like SETQ on lexical variables or those with dynamic
bindings; it only saves information on the history list for changes to
global, "top-level" values.

(UNDOSAVE UNDOFORM HISTENTRY) [Function]

Adds the undo information UNDOFORM to the SIDE property of the
history event HISTENTRY. If there is no SIDE property, one is
created. If the value of the SIDE property is NOSAVE, the
information is not saved. HISTENTRY specifies an event. If
HISTENTRY=NIL, the value of LISPXHIST is used. If both
HISTENTRY and LISPXHIST are NIL, UNDOSAVE is a no-op.

The form of UNDOFORM is (FN . ARGS). Undoing is done by
performing (APPLY (CAR UNDOFORM) (CDR UNDOFORM)).

\#UNDOSAVES [Variable]

The value of \#UNDOSAVES is the maximum number of
UNDOFORMs to be saved for a single event. When the count of
UNDOFORMs reaches this number, UNDOSAVE prints the
message CONTINUE SAVING?, asking if you want to continue
saving. If you answer NO or default, UNDOSAVE discards the
previously saved information for this event, and makes NOSAVE
be the value of the property SIDE, which disables any further
saving for this event. If you answer YES, UNDOSAVE changes the
count to -1, which is then never incremented, and continues saving.
The purpose of this feature is to avoid tying up large quantities of
storage for operations that will never need to be undone.

A-16 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

If \#UNDOSAVES is negative, then when the count reaches (ABS
\#UNDOSAVES), UNDOSAVE simply stops saving without printing
any messages or other interactions. \#UNDOSAVES=NIL is
equivalent to \#UNDOSAVES=infinity. \#UNDOSAVES is initially
NIL.

The configuration described here has been found to be a very
satisfactory one. You pay a very small price for the ability to undo
what you type in, since the interpreted evaluation is simply watched
for destructive operations, or if you wish to protect yourself from
malfunctioning in your own programs, you can explicitly call, or
have your program rewritten to explicitly call, undoable functions.

Undoing Out of Order

UNDOABLY-SETF operates undoably by saving (on the history
list) the cell that is to be changed and its original contents. Undoing
an UNDOABLY-SETF restores the saved contents.

This implementation can produce unexpected results when multiple
modifications are made to the same piece of storage and then
undone out of order. For example, if you type (SETF (CAR FOO)
1), followed by (SETF (CAR FOO) 2), then undo both events by
undoing the most recent event first, then undoing the older event,
FOO will be restored to its state before either event operated.
However if you undo the first event, then the second event, (CAR
FOO) will be 1, since this is what was in CAR of FOO before
(UNDOABLY-SETF (CAR FOO) 2) was executed. Similarly, if you
type (NCONC FOO ’(1)), followed by (NCONC FOO ’(2)), undoing
just (NCONC FOO ’(1)) will remove both 1 and 2 from FOO. The
problem in both cases is that the two operations are not
independent.

In general, operations are always independent if they affect
different lists or different sublists of the same list. Undoing in
reverse order of execution, or undoing independent operations, is
always guaranteed to do the right thing. However, undoing
dependent operations out of order may not always have the
predicted effect.

Format and Use of the History List

LISPXHISTORY [Variable]

The Exec currently uses one primary history list, LISPXHISTORY
for the storing events.

The history list is in the form (EVENTS EVENT# SIZE MOD), where
EVENTS is a list of events with the most recent event first, EVENT#
is the event number for the most recent event on EVENTS, SIZE is
the the maximum length EVENTS is allowed to grow. MOD is is
the maximum event number to use, after which event numbers roll
over. LISPXHISTORY is initialized to (NIL 0 100 1000).

The history list has a maximum length, called its time-slice. As new
events occur, existing events are aged, and the oldest events are
forgotten. The time-slice can be changed with the function
CHANGESLICE. Larger time-slices enable longer memory spans,

A-17LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

but tie up correspondingly greater amounts of storage. Since a
user seldom needs really ancient history, a relatively small time-
slice such as 30 events is usually adequate, although some users
prefer to set the time-slice as large as 200 events.

Each individual event on EVENTS is a list of the form (INPUT ID
VALUE . PROPS). For Exec events, ID is a list (EVENT-NUMBER
EXEC-ID). The EVENT-NUMBER is the number of the event, while
the EXEC-ID is a string that uniquely identifies the Exec. (The
EXEC-ID is used to identify which events belong to the "same"
Exec.) VALUE is the (first) value of the event. PROPS is a
property list used to associate other information with the event
(described below).

INPUT is the input sequence for the event. Normally, this is just the
input that the user typed-in. For an APPLY-format input this is a list
consisting of two expressions; for an EVAL-format input, this is a
list of just one expression; for an input entered as list of atoms,
INPUT is simply that list. For example,

User Input INPUT is:

LIST(1 2) (LIST (1 2))

(LIST 1 1) ((LIST 1 1))

DIR "{DSK}<LISPFILES>"cr (DIR "{DSK}<LISPFILES>")

If you type in an Exec command that executes other events
(REDO, USE, etc.), several events might result. When there is
more than one input, they are wrapped together into one invocation
of the DO-EVENTS command.

The same convention is used for representing multiple inputs when
a USE command involves sequential substitutions. For example, if
you type FBOUNDP(FOO) and then USE FIE FUM FOR FOO, the
input sequence that will be constructed is DO-EVENTS (EVENT
FBOUNDP (FIE)) (EVENT FBOUNDP (FUM)), which is the result
of substituting FIE for FOO in (FBOUNDP (FOO)) concatenated
with the result of substituting FUM for FOO in (FBOUNDP (FOO)).

PROPS is a property list of the form (PROPERTY1 VALUE1

PROPERTY2 VALUE2 ...), that can be used to associate arbitrary

information with a particular event. Currently, the following
properties are used by the Exec:

SIDE A list of the side effects of the event. See UNDOSAVE.

LISPXPRINT Used to record calls to EXEC-FORMAT, and printed by the ??
command.

Making or Changing an Exec

(XCL:ADD-EXEC &KEY PROFILE REGION TTY ID) [Function]

Creates a new process and window with an Exec running in it.
PROFILE is the type of the Exec to be created (see below under
XCL:SET-EXEC-TYPE). REGION optionally gives the shape and
location of the window to be used. If not provided the user will be
prompted. TTY is a flag, which, if true, causes the tty to be given to

A-18 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

the new Exec process. ID is a string identifier to use for events
generated in this exec. ID defaults to the number given to the Exec
process created.

(XCL:EXEC &KEY WINDOW PROMPT COMMAND-TABLES ENVIRONMENT PROFILE TOP-
LEVEL-P TITLE FUNCTION ID) [Function]

This is the main entry to the Exec. The arguments are:

WINDOW defaults to the current TTY display stream, or can be
provided a window in which the Exec will run.

PROMPT is the prompt to print.

COMMAND-TABLES is a list of hash-tables for looking up
commands (e.g., *EXEC-COMMAND-TABLE* or *DEBUGGER-
COMMAND-TABLE*).

ENVIRONMENT is a lexical environment used to evaluate things in.

READTABLE is the default readtable to use (defaults to the
"Common Lisp" readtable).

PROFILE is a way to set the Exec’s type (see above, "Multiple
Execs and the Exec’s Type").

TOP-LEVEL-P is a boolean, which should be true if this Exec is at
the top level.

TITLE is an identifying title for the window title of the Exec.

FUNCTION is a function used to actually evaluate events, default is
EVAL-INPUT.

ID is a string identifier to use for events generated in this Exec. ID
defaults to the number given to the Exec process.

XCL:*PER-EXEC-VARIABLES* [Variable]

A list of pairs of the form (VAR INIT). Each time an Exec is entered,
the variables in *PER-EXEC-VARIABLES* are rebound to the
value returned by evaluating INIT. The initial value of *PER-EXEC-
VARIABLES* is:

((*PACKAGE* *PACKAGE*)

 (* *)

 (** **)

 (*** ***)

 (+ +)

 (++ ++)

 (+++ +++)

 (- -)

 (/ /)

 (// //)

 (/// ///)

 (HELPFLAG T)

 (*EVALHOOK* NIL)

 (*APPLYHOOK* nil)

 (*ERROR-OUPUT* *TERMINAL-IO*)

 (*READTABLE* *READTABLE*)

 (*package* *package*)

A-19LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

 (*eval-function* *eval-function*)

 (*exec-prompt* *exec-prompt*)

 (*debugger-prompt* *debugger-prompt*))

Most of these cause the values to be (re)bound to their current
value in any inferior Exec, or to NIL, their value at the "top level".

XCL:*EVAL-FUNCTION* [Variable]

Bound to the function used by the Exec to evaluate input. Typically
in an INTERLISP Exec this is IL:EVAL, and in a Common Lisp
Exec, CL:EVAL.

XCL:*EXEC-PROMPT* [Variable]

Bound to the string printed by the Exec as a prompt for input.
Typically in an INTERLISP Exec this is " ← ", and in a Common
Lisp Exec, "> ".

XCL:*DEBUGGER-PROMPT* [Variable]

Bound to the string printed by the debugger Exec as a prompt for
input. Typically in an INTERLISP Exec this is " ← : ", and in a
Common Lisp Exec, ": ".

(XCL:EXEC-EVAL FORM &OPTIONAL ENVIRONMENT) [Function]

Evaluates FORM (using EVAL) in the lexical environment
ENVIRONMENT the same as though it were typed in to EXEC, i.e.,
the event is recorded, and the evaluation is made undoable by
substituting the UNDOABLE-functions for the corresponding
destructive functions. XCL:EXEC-EVAL returns the value(s) of the
form, but does not print it, and does not reset the variables *, **, ***,
etc.

(XCL:EXEC-FORMAT CONTROL-STRING &REST ARGUMENTS) [Function]

In addition to saving inputs and values, the Exec saves many
system messages on the history list. For example, FILE
CREATED ..., FN redefined, VAR reset, output of TIME,
BREAKDOWN, ROOM, save their output on the history list, so that
when ?? prints the event, the output is also printed. The function
XCL:EXEC-FORMAT can be used in user code similarly.
XCL:EXEC-FORMAT performs (APPLY #’CL:FORMAT
TERMINAL-IO CONTROL-STRING ARGUMENTS) and also
saves the format string and arguments on the history list associated
with the current event.

(XCL:SET-EXEC-TYPE NAME) [Function]

Sets the type of the current Exec to that indicated by NAME. This
can be used to set up the Exec to your liking. NAME may be an
atom or string. Possible names are:

INTERLISP, IL *READTABLE* INTERLISP

PACKAGE INTERLISP

A-20 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

XCL:*DEBUGGER-PROMPT* "←: "

XCL:*EXEC-PROMPT* "←"

XCL:*EVAL-FUNCTION* IL:EVAL

XEROX-COMMON-LISP, XCL *READTABLE* XCL

PACKAGE XCL-USER

XCL:*DEBUGGER-PROMPT* ": "

XCL:*EXEC-PROMPT* "> "

XCL:*EVAL-FUNCTION* CL:EVAL

COMMON-LISP, CL *READTABLE* LISP

PACKAGE USER

XCL:*DEBUGGER-PROMPT* ": "

XCL:*EXEC-PROMPT* "> "

XCL:*EVAL-FUNCTION* CL:EVAL

OLD-INTERLISP-T *READTABLE* OLD-INTERLISP-T

PACKAGE INTERLISP

XCL:*DEBUGGER-PROMPT* “←: "

XCL:*EXEC-PROMPT* ": "

XCL:*EVAL-FUNCTION* IL:EVAL

(XCL:SET-DEFAULT-EXEC-TYPE NAME) [Function]

Like XCL:SET-EXEC-TYPE , but sets the type of Execs created by
default, as from the background menu. Initially XCL. This can be
used in your greet file to set default Execs to your liking.

Editing Exec Input

The Exec features an editor for input which provides completion,
spelling correction, help facility, and character-level editing. The
implementation is borrowed from the Interlisp module TTYIN. This
section describes the use of the TTYIN editor from the perspective
of the Exec.

Editing Your Input

Some editing operations can be performed using any of several
characters; characters that are interrupts will, of course, not be
read, so several alternatives are given. The following characters
may be used to edit your input:

CONTROL-A, BACKSPACE Deletes a character. At the start of the second or subsequent lines
of your input, deletes the last character of the previous line.

CONTROL-W Deletes a "word". Generally this means back to the last space or
parenthesis.

A-21LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

CONTROL-Q Deletes the current line, or if the current line is blank, deletes the
previous line.

CONTROL-R Refreshes the current line. Two in a row refreshes the whole buffer
(when doing multiline input).

ESCAPE Tries to complete the current word from the spelling list
USERWORDS. In the case of ambiguity, completes as far as is
uniquely determined, or beeps.

UNDO key (on 1108 and 1186)
Middle-blank key (on 1132) Retrieves characters from the previous non-empty buffer when it is

able to; e.g., when typed at the beginning of the line this command
restores the previous line you typed; when typed in the middle of a
line fills in the remaining text from the old line; when typed following
CONTROL-Q or CONTROL-W restores what those commands
erased.

CONTROL-X Goes to the end of your input (or end of expression if there is an
excess right parenthesis) and returns if parentheses are balanced.

If you are already at the end of the input and the expression is
balanced except for lacking one or more right parentheses,
CONTROL-X adds the required right parentheses to balance and
returns.

During most kinds of input, lines are broken, if possible, so that no
word straddles the end of the line. The pseudo-carriage return
ending the line is still read as a space, however; i.e., the program
keeps track of whether a line ends in a carriage return or is merely
broken at some convenient point. You will not get carriage returns
in your strings unless you explicitly type them.

Using the Mouse

Editing with the mouse during TTYIN input is slightly different than
with other modules. The mouse buttons are interpreted as follows
during TTYIN input:

LEFT Moves the caret to where the cursor is pointing. As you hold down
LEFT, the caret moves around with the cursor; after you let up, any
type-in will be inserted at the new position.

MIDDLE or LEFT+RIGHT Like LEFT, but moves only to word boundaries.

RIGHT Deletes text from the caret to the cursor, either forward or
backward. While you hold down RIGHT, the text to be deleted is
inverted; when you let up, the text goes away. If you let up outside
the scope of the text, nothing is deleted (this is how to cancel this
operation).

If you hold down MOVE, COPY, SHIFT or CTRL while pressing the
mouse buttons, you instead get secondary selection, move
selection or delete selection. The selection is made by holding the
appropriate key down while pressing the mouse buttons LEFT (to
select a character) or MIDDLE (to select a word), and optionally
extend the selection either left or right using RIGHT. While you are
doing this, the caret does not move, but the selected text is
highlighted in a manner indicating what is about to happen. When
the selection is complete, release the mouse buttons and then lift

A-22 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

up on MOVE/COPY/CTRL/SHIFT and the appropriate action will
occur:

COPY or SHIFT The selected text is inserted as if it were typed. The text is
highlighted with a broken underline during selection.

CTRL The selected text is deleted. The text is complemented during
selection.

MOVE or CTRL+SHIFT Combines copy and delete. The selected text is moved to the caret.

You can cancel a selection in progress by pressing LEFT or
MIDDLE as if to select, and moving outside the range of the text.

The most recent text deleted by mouse command can be inserted
at the caret by typing the UNDO key (on the Xerox
1108/1186/1185) or the Middle-blank key (on the Xerox 1132).
This is the same key that retrieves the previous buffer when issued
at the end of a line.

Editing Commands

A number of characters have special effects while typing to the
Exec. Some of them merely move the caret inside the input stream.
While caret positioning can often be done more conveniently with
the mouse, some of the commands, such as the case changing
commands, can be useful for modifying the input.

In the descriptions below, current word means the word the cursor
is under, or if under a space, the previous word. Currently,
parentheses are treated as spaces, which is usually what you want,
but can occasionally cause confusion in the word deletion
commands. The notation [CHAR] means meta-CHAR. The
notation $ stands for the ESCAPE/EXPAND key. Most commands
can be preceded by numbers or escape (means infinity), only the
first of which requires the meta key (or the edit prefix). Some
commands also accept negative arguments, but some only look at
the magnitude of the argument. Most of these commands are
confined to work within one line of text unless otherwise noted.

Cursor Movement Commands

[bs] Backs up one (or n) characters.

[space] Moves forward one (or n) characters.

[^] Moves up one (or n) lines.

[lf] Moves down one (or n) lines.

[(] Moves back one (or n) words.

[)] Moves ahead one (or n) words.

[tab] Moves to end of line; with an argument moves to nth end of line;
[$tab] goes to end of buffer.

[control-L] Moves to start of line (or nth previous, or start of buffer).

[{] and [}] Goes to start and end of buffer, respectively (like [$control-L] and
[$tab]).

A-23LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

[[] (meta-left-bracket) Moves to beginning of the current list, where cursor is currently
under an element of that list or its closing paren. (See also the
auto-parenthesis-matching feature below under "Assorted Flags".)

[]] (meta-right-bracket) Moves to end of current list.

[Sx] Skips ahead to next (or nth) occurrence of character x, or rings the
bell.

[Bx] Backward search, i.e., short for [-S] or [-nS].

Buffer Modification Commands

[Zx] Zaps characters from cursor to next (or nth) occurrence of x. There
is no unzap command.

[A] or [R] Repeats the last S, B, or Z command, regardless of any intervening
input.

[K] Kills the character under the cursor, or n chars starting at the
cursor.

[cr] When the buffer is empty is the same as undo i.e. restores buffer’s
previous contents. Otherwise is just like a <cr> (except that it also
terminates an insert). Thus, [<cr><cr>] will repeat the previous
input (as will undo<cr> without the meta key).

[O] Does "Open line", inserting a crlf after the cursor, i.e., it breaks the
line but leaves the cursor where it is.

[T] Transposes the characters before and after the cursor. When
typed at the end of a line, transposes the previous two characters.
Refuses to handle odd cases, such as tabs.

[G] Grabs the contents of the previous line from the cursor position
onward. [nG] grabs the nth previous line.

[L] Puts the current word, or n words on line, in lower case. [$L] puts
the rest of the linein lower case; or if given at the end of line puts
the entire line in lower case.

[U] Analogous to [L], for putting word, line, or portion of line in upper
case.

[C] Capitalizes. If you give it an argument, only the first word is
capitalized; the rest are just lowercased.

[control-Q] Deletes the current line. [$control-Q] deletes from the current
cursor position to the end of the buffer. No other arguments are
handled.

[control-W] Deletes the current word, or the previous word if sitting on a space.

Miscellaneous Commands

[P] Prettyprints buffer. Clears the buffer and reprints it using
prettyprint. If there are not enough right parentheses, it will supply
more; if there are too many, any excess remains unprettyprinted at
the end of the buffer. May refuse to do anything if there is an
unclosed string or other error trying to read the buffer.

[N] Refreshes line. Same as control-R. [$N] refreshes the whole
buffer; [nN] refreshes n lines. Cursor movement in TTYIN depends

A-24 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

on TTYIN being the only source of output to the window; in some
circumstances, you may need to refresh the line for best results.

[control-Y] Gets an Interlisp Exec.

[$control-Y] Gets an Interlisp Exec, but first unreads the contents of the buffer
from the cursor onward. Thus if you typed at TTYIN something
destined for Interlisp, you can do [control-L$control-Y] and give it to
Lisp.

[←] Adds the current word to the spelling list USERWORDS. With zero
argument, removes word. See TTYINCOMPLETEFLG .

Useful Macros

If the event is considered short enough, the Exec command FIX will
load the buffer with the event’s input, rather than calling the
structure editor. If you really wanted the Lisp editor for your fix, you
can say FIX EVENT - |TTY:|.

?= Handler

Typing the characters ?=<cr> displays the arguments to the
function currently in progress. Since TTYIN wants you to be able to
continue editing the buffer after a ?=, it prints the arguments below
your type-in and then puts the cursor back where it was when ?=
was typed.

Assorted Flags

These flags control aspects of TTYIN’s behavior. Some have
already been mentioned. In Interlisp-D, the flags are all initially set
to T.

?ACTIVATEFLG [Variable]

If true, enables the feature whereby ? lists alternative completions
from the current spelling list.

SHOWPARENFLG [Variable]

If true, then whenever you are typing Lisp input and type a right
parenthesis, TTYIN will briefly move the cursor to the matching
parenthesis, assuming it is still on the screen. The cursor stays
there for about 1 second, or until you type another character (i.e., if
you type fast you will never notice it).

USERWORDS [Variable]

USERWORDS contains words you mentioned recently: functions
you have defined or edited, variables you have set or evaluated at
the executive level, etc. This happens to be a very convenient list
for context-free escape completion; if you have recently edited a
function, chances are good you may want to edit it again (typing
"ED(xx$)") or type a call to it. If there is no completion for the
current word from USERWORDS, or there is more than one

A-25LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

possible completion, TTYIN beeps. If typed when not inside a
word, Escape completes to the value of LASTWORD, i.e., the last
thing you typed that the Exec noticed, except that Escape at the
beginning of the line is left alone (it is an Old Interlisp Exec
command).

If you really wanted to enter an escape, you can, of course, just
quote it with a CONTROL-V, like you can other control characters.

You may explicitly add words to USERWORDS yourself that would
not get there otherwise. To make this convenient online the edit
command [←] means "add the current atom to USERWORDS" (you
might think of the command as pointing out this atom). For
example, you might be entering a function definition and want to
point to one or more of its arguments or prog variables. Giving an
argument of zero to this command will instead remove the indicated
atom from USERWORDS.

Note that this feature loses some of its value if the spelling list is too
long, if there are too many alternative completions for you to get by
with typing a few characters followed by escape. Lisp’s
maintenance of the spelling list USERWORDS keeps the temporary
section (which is where everything goes initially unless you say
otherwise) limited to \#USERWORDS atoms, initially 100. Words
fall off the end if they haven’t been used (they are used if
FIXSPELL corrects to one, or you use <escape> to complete one).

A-26 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

[This page intentionally left blank]

