
File created: 6-Jan-92 15:22:46 {DSK}<usr>local>lde>lispcore>sources>SEDIT-TOPLEVEL.;2

changes to: (IL:FNS COMPLETION)
(IL:VARS IL:SEDIT-TOPLEVELCOMS)
(IL:FUNCTIONS FIX-EDITDATE)

previous date: 10-Jul-91 19:11:12 {DSK}<usr>local>lde>lispcore>sources>SEDIT-TOPLEVEL.;1

Read Table: XCL

Package: SEDIT

Format: XCCS

; Copyright (c) 1986, 1987, 1988, 1990, 1991, 1992 by Venue & Xerox Corporation. All rights reserved.

(IL:RPAQQ IL:SEDIT-TOPLEVELCOMS
((IL:PROP IL:FILETYPE IL:SEDIT-TOPLEVEL)
(IL:PROP IL:MAKEFILE-ENVIRONMENT IL:SEDIT-TOPLEVEL)
(IL:LOCALVARS . T)
(IL:DECLARE\: IL:DONTCOPY IL:DOEVAL@COMPILE (IL:FILES IL:SEDIT-DECLS))
(IL:INITVARS CONTEXTS REGIONS)
(IL:VARS (IL:*DISPLAY-EDITOR* ’SEDIT))
(IL:FNS SEDIT RESET GET-WINDOW-REGION SAVE-WINDOW-REGION)
(IL:FNS GET-CONTEXT DISINTEGRATE-CONTEXT AWAKE-COMMAND-PROCESS AWAKE-ME MARKASCHANGEDFN

NEW-FUNCTION-BODY)
(IL:FUNCTIONS QUERY-THROW-AWAY-CHANGES SET-OPTIONS SET-PROPS START-PROCESS)
(IL:COMS

;; THESE CAN ALL BE NUKED WITH THE NEW EDIT INTERFACE AND A DETACHED TTY/EDITOR (WOZ 1/25/91)

(IL:PROP (IL:|Definition-for-EDITL| IL:|Definition-for-EDITE| IL:|Definition-for-EDITDATE|)
SEDIT)

(IL:FNS SEDITE SEDITL FN-CHANGED PROP-CHANGED PROPLST-CHANGED VAR-CHANGED ALIST-COMPLETION
COMPLETION PROPS-COMPLETION TTYFN LOCATE-NODE-FROM-EDITCHAIN)

;; SEdit’s hack way of fixing edit dates

(IL:FUNCTIONS FIX-EDITDATE)

;; Mess around with the tty editor’s TTY: command by defining a hook and then making TTY: a macro which calls the hook.

(IL:FUNCTIONS SMART-TTYFN)
(IL:P (PUSHNEW ’(IL:TTY\: NIL (IL:E (SMART-TTYFN)

T))
IL:EDITMACROS :TEST #’IL:EQUAL)))

(IL:FNS PRETTY-PRINT MAP-FONT)

;; these guys allow you to print and read structures with broken atoms and gaps. just a convenience for the loser who forgets to get them
;; out of his code.

(IL:FUNCTIONS MAKE-BROKEN-ATOM PRINT-BROKEN-ATOM MAKE-GAP PRINT-GAP)
(IL:P (IL:DEFPRINT ’BROKEN-ATOM ’PRINT-BROKEN-ATOM)

(IL:DEFPRINT ’GAP ’PRINT-GAP))))

(IL:PUTPROPS IL:SEDIT-TOPLEVEL IL:FILETYPE :COMPILE-FILE)

(IL:PUTPROPS IL:SEDIT-TOPLEVEL IL:MAKEFILE-ENVIRONMENT (:READTABLE "XCL" :PACKAGE (DEFPACKAGE "SEDIT"
(:USE "LISP" "XCL"))))

(IL:DECLARE\: IL:DOEVAL@COMPILE IL:DONTCOPY

(IL:LOCALVARS . T)
)

(IL:DECLARE\: IL:DONTCOPY IL:DOEVAL@COMPILE

(IL:FILESLOAD IL:SEDIT-DECLS)
)

(IL:RPAQ? CONTEXTS NIL)

(IL:RPAQ? REGIONS NIL)

(IL:RPAQQ IL:*DISPLAY-EDITOR* SEDIT)

(IL:DEFINEQ

(SEDIT
 (IL:LAMBDA (STRUCTURE PROPS OPTIONS) ; Edited 25-Jan-91 13:51 by woz

(OR STRUCTURE (IL:SETQ STRUCTURE BASIC-GAP))
(LET* ((NAME (IL:LISTGET PROPS :NAME))

(TYPE (OR (IL:LISTGET PROPS :TYPE)
:EXPRESSION))

(CONTEXT (GET-CONTEXT STRUCTURE NAME TYPE))
(WINDOW (IL:|fetch| DISPLAY-WINDOW IL:|of| CONTEXT)))

(SET-PROPS CONTEXT PROPS)
(SET-OPTIONS CONTEXT OPTIONS)
(COND

((NULL WINDOW)

;; this is a new context, needs to be setup from scratch

{MEDLEY}<CLTL2>SEDIT-TOPLEVEL.;1 (SEDIT cont.) Page 2

(START-PROCESS CONTEXT NAME)
CONTEXT)

((AND (IL:OPENWP WINDOW)
(IL:PROCESSP (IL:WINDOWPROP WINDOW ’IL:PROCESS)))

;; open and active

(IL:TOTOPW WINDOW)
(WHEN (OR (NOT (EQ T (IL:|fetch| (EDIT-CONTEXT CHANGED-STRUCTURE?) IL:|of| CONTEXT)))

(QUERY-THROW-AWAY-CHANGES NAME OPTIONS))

;; there are no changes on this edit, or user said throw away changes, so we will restart this edit.

(IL:|replace| CHANGED-STRUCTURE? IL:|of| CONTEXT IL:|with| STRUCTURE)
(IL:RESTART.PROCESS (IL:WINDOWPROP WINDOW ’IL:PROCESS))
CONTEXT))

((IL:OPENWP (IL:WINDOWPROP WINDOW ’IL:ICONWINDOW))

;; shrunk

(IL:|replace| CHANGED-STRUCTURE? IL:|of| CONTEXT IL:|with| STRUCTURE)
(IL:EXPANDW WINDOW)
CONTEXT)

(T
;; found a dead context. get rid of it and try again.

(DISINTEGRATE-CONTEXT CONTEXT)
(SEDIT STRUCTURE PROPS OPTIONS))))))

(RESET
 (IL:LAMBDA NIL ; Edited 10-Jul-87 08:35 by DCB

(COND
(CONTEXTS (IL:ERROR "Can’t reset SEdit while there are open SEdit windows"))
(T (CREATE-ENVIRONMENTS)

(RESET-FORMATS)
T))))

(GET-WINDOW-REGION
 (IL:LAMBDA (CONTEXT REASON NAME TYPE) ; Edited 19-Nov-87 10:18 by DCB

;;; called to get a region for this sedit window. should return the region for the sedit including the prompt window. context is being built and needs a
;;; window. the context will have at least the name (IconTitle) and type (EditType) of the object being edited, and can be used as desired to map
;;; between contexts and windows. If reason is :CREATE, then this function must return a region. If :EXPAND, then this algorithm returns a region from
;;; the stack only if SEDIT.KEEP.WINDOW.REGION is nil, otherwise it returns NIL, telling the window system not to reshape on expansion.

(WHEN (OR (EQ REASON :CREATE)
(NOT KEEP-WINDOW-REGION))

(OR (IL:POP REGIONS)
(PROGN (IL:|printout| IL:PROMPTWINDOW T "Select region for SEdit window.")

(IL:GETREGION 30 20))))))

(SAVE-WINDOW-REGION
 (IL:LAMBDA (CONTEXT REASON NAME TYPE REGION) ; Edited 23-Nov-87 17:46 by DCB

;;; Release this sedit windows region to be used again. If we’re shrinking, KEEP-WINDOW-REGION determines whether to release the region or not. If
;;; an icon is being closed, don’t release the region because it was handled appropriately when the window as shrunk. remember, we’re maintaining
;;; regions including the prompt window height, so use WINDOWREGION to get the whole region.

(WHEN (OR (EQ REASON :CLOSE)
(AND (EQ REASON :SHRINK)

(NOT KEEP-WINDOW-REGION)))
(IL:|push| REGIONS (OR REGION (IL:WINDOWREGION (IL:|fetch| DISPLAY-WINDOW IL:|of| CONTEXT)))))))

)

(IL:DEFINEQ

(GET-CONTEXT
 (IL:LAMBDA (STRUCTURE NAME TYPE SEARCH-ONLY?) ; Edited 5-Dec-90 13:00 by woz

;;; we’ve been asked to get the edit context for a new edit. if a context matching this description (same name and same type, or EQ structure) already
;;; exists, we’ll return it rather than creating a new one. Also, if SEARCH-ONLY? is true then don’t create a new one, just return NIL if not found.

(IL:|bind| WINDOW IL:|for| CONTEXT IL:|in| CONTEXTS
IL:|when| (OR (AND NAME (EQUAL NAME (IL:|fetch| ICON-TITLE IL:|of| CONTEXT))

(EQ TYPE (IL:|fetch| EDIT-TYPE IL:|of| CONTEXT)))
(AND STRUCTURE (IL:|type?| EDIT-NODE (IL:|fetch| ROOT IL:|of| CONTEXT))

(EQ STRUCTURE (IL:|fetch| STRUCTURE IL:|of| (SUBNODE 1 (IL:|fetch| ROOT IL:|of| CONTEXT))))))
IL:|do|

;; we found a context that matches, return it.

(RETURN CONTEXT)
IL:|finally|

;; this is a new editing task, so make an appropriate context and get it started

(IF SEARCH-ONLY?
(RETURN NIL)
(LET ((CONTEXT (IL:|create| EDIT-CONTEXT

{MEDLEY}<CLTL2>SEDIT-TOPLEVEL.;1 (GET-CONTEXT cont.) Page 3

COMPLETION-EVENT IL:_ (IL:CREATE.EVENT (IL:CONCAT EDITOR-NAME NAME))
ROOT IL:_ STRUCTURE
ICON-TITLE IL:_ NAME
EDIT-TYPE IL:_ TYPE)))

(PUSH CONTEXT CONTEXTS)
(RETURN CONTEXT))))))

(DISINTEGRATE-CONTEXT
 (IL:LAMBDA (CONTEXT) ; Edited 5-Dec-90 17:45 by woz

;;; terminate this edit context. we mark it as dead, remove it from the active edits list, smash the connections between the context and the window

(WHEN CONTEXT
(IL:NOTIFY.EVENT (IL:|fetch| COMPLETION-EVENT IL:|of| CONTEXT))
(IL:|replace| CONTEXT-LOCK IL:|of| CONTEXT IL:|with| ’DEAD)
(IL:WINDOWPROP (IL:|fetch| DISPLAY-WINDOW IL:|of| CONTEXT)

’EDIT-CONTEXT NIL)
(IL:|replace| DISPLAY-WINDOW IL:|of| CONTEXT IL:|with| NIL)
(IL:SETQ CONTEXTS (IL:DREMOVE CONTEXT CONTEXTS)))))

(AWAKE-COMMAND-PROCESS
 (IL:LAMBDA (CONTEXT COMMAND) ; Edited 5-Dec-90 16:52 by woz

;; if this context has a process associated with it, and the process is currently stuck waiting for input, unstick it so that it can look around and
;; (presumably) notice some important change in its environment. This is also called when someone in another process, such as a command menu
;; or a window menu operation, wants to tell the command process to execute the command. Note that under a few circumstances this function will
;; be called by a running command in the sedit process. For example, the complete-and-close command calls il:closew which calls sedit’s closefn
;; which tries to wake up the sedit to let it know the window was closed. In this case, awake-command-porcess will result in a no-op because sedit
;; has a command running, and therefore cannot be woken up. COMMAND is a command form which will be used as the value returned from
;; GETKEY in SEDIT1. COMMAND should be of the form (<fn> <normalize?> <extra args>), so that <fn> will be applied to the context, the
;; charcode invokeing the command (NIL in this case), and the extra args. After the command runs the window will scroll to normalize the caret if
;; <normalize?> is T. If COMMAND is NIL then the SEdit will just update the window.

(LET ((PROCESS (IL:WINDOWPROP (IL:|fetch| DISPLAY-WINDOW IL:|of| CONTEXT)
’IL:PROCESS)))

(WHEN (IL:PROCESSP PROCESS)
(IL:PROCESS.APPLY PROCESS ’AWAKE-ME (LIST COMMAND))))))

(AWAKE-ME
 (IL:LAMBDA (RESULT) ; Edited 7-Jul-87 12:59 by DCB

;; this rather ugly little function checks to see if it’s being called under getkey (presumably by PROCESS.APPLY from awake.command.process)
;; and if so forces the getkey to return result

(LET ((STACK-FRAME (IL:STKPOS ’GETKEY)))
(WHEN STACK-FRAME (IL:RETFROM STACK-FRAME RESULT T)))))

(MARKASCHANGEDFN
 (IL:LAMBDA (NAME TYPE REASON) ; Edited 3-Apr-91 15:42 by jds

;;; When a managed object is changed, we must check if we have an open edit on it. If so, calling SEdit again, with the fresh definition, will force the
;;; update. This is fairly tricky, though. Markaschanged is called as a result of editing a managed definition, so this markaschangedfn could be running
;;; in the sedit process under the completion-fn half way through completion. IDEALLY in this case we could say "i know it changed, i just changed it!"
;;; and ignore this call. BUT FOR NOW (1/14/91) since the manager can change the definition on completion (editdates, for one), we have to notify
;;; SEdit. Since calling editdef will restart the sedit process, the completion-fn will not finish, so do the verify-structure here.

(LET* ((FORM (IL:PROCESSPROP (IL:THIS.PROCESS)
’IL:FORM))

CONTEXT)
(COND

((AND (EQ (CAR FORM)
’SEDIT1)

(IL:|type?| EDIT-CONTEXT (SETQ CONTEXT (CADADR FORM)))
(EQ NAME (IL:|fetch| ICON-TITLE IL:|of| CONTEXT))
(EQ TYPE (IL:|fetch| EDIT-TYPE IL:|of| CONTEXT)))

;; we’re running under the edit that is completing

(UNLESS *IGNORE-CHANGES-ON-COMPLETION*
(VERIFY-STRUCTURE CONTEXT NIL (IL:GETDEF NAME TYPE NIL ’(IL:EDIT IL:NOCOPY)))))

((GET-CONTEXT NIL NAME TYPE T)

;; found a matching context elsewhere

(IL:EDITDEF NAME TYPE NIL NIL ’(:DONTWAIT)))))))

(NEW-FUNCTION-BODY
 (IL:LAMBDA (DUMMY-BODY) ; Edited 7-Jul-87 12:59 by DCB

(IF (IL:NEQ (IL:EDITMODE)
’SEDIT)

(IL:COPY DUMMY-BODY)
(LIST ’IL:LAMBDA ARGS-GAP BODY-GAP))))

)

{MEDLEY}<CLTL2>SEDIT-TOPLEVEL.;1 Page 4

(DEFUN QUERY-THROW-AWAY-CHANGES (NAME OPTIONS)

;;; this gets called when sedit is restarting because it got called again, but the structure doesn’t match and changes have been made. should we throw
;;; away the changes and restart with the new structure, or not restart and keep the changes? ask the user.

(IF (IL:EQMEMB :DISPLAY OPTIONS)
(IL:MENU (IL:|create| IL:MENU

IL:ITEMS IL:_ ’(("Throw away changes and restart with new structure" T)
("Keep changes and don’t restart with new structure" NIL))

IL:TITLE IL:_ (FORMAT NIL "An edit session with changes already exists for ~S" NAME)))
(IF (EQ ’IL:Y (IL:ASKUSER NIL NIL (FORMAT NIL "An edit session with changes already exists for ~S. Throw

away changes and restart with new structure? " NAME)))
T)))

(DEFUN SET-OPTIONS (CONTEXT OPTIONS)

;;; set up the OPTIONS provided in the call to SEDIT for this context. Most of these options do not require immediate action. Rather, they control how
;;; some command or interaction will work later, so we just store the option list in the context. Most of these options are really edit-interface options, not
;;; sedit options. We stash them so that when the *edit-fn* is called under M-O, it will be handed the same options that this edit was started with

(IL:REPLACE (EDIT-CONTEXT EDIT-OPTIONS) IL:OF CONTEXT IL:WITH (IF (LISTP OPTIONS)
OPTIONS
(LIST OPTIONS))))

(DEFUN SET-PROPS (CONTEXT PROPS)

;;; go through the PROPS list supplied in the call to SEDIT and store the info in the context. The :NAME and :TYPE props are already handled, because
;;; get-context uses this information to find an appropriate context. Grab the current values of the variables that determine reading and printing, and save
;;; them in a profile in the context, so that later changes to the globals don’t affect existing contexts.

(IL:REPLACE (EDIT-CONTEXT COMPLETION-FN) IL:OF CONTEXT IL:WITH (OR (IL:LISTGET PROPS :COMPLETION-FN)
#’NULL))

(IL:REPLACE (EDIT-CONTEXT ROOT-CHANGED-FN) IL:OF CONTEXT IL:WITH (OR (IL:LISTGET PROPS :ROOT-CHANGED-FN)
#’NULL))

(IL:REPLACE (EDIT-CONTEXT ENVIRONMENT) IL:OF CONTEXT IL:WITH (OR (IL:LISTGET PROPS :ENVIRONMENT)
LISP-EDIT-ENVIRONMENT))

(IL:REPLACE (EDIT-CONTEXT PROFILE) IL:OF CONTEXT IL:WITH (OR (IL:LISTGET PROPS :PROFILE)
(SAVE-PROFILE (COPY-PROFILE "READ-PRINT"))))

(IL:REPLACE (EDIT-CONTEXT EVAL-IN-PROCESS) IL:OF CONTEXT IL:WITH (OR (IL:LISTGET PROPS :EVAL-IN-PROCESS)
(EVAL-IN-PROCESS)))

(IL:REPLACE (EDIT-CONTEXT EVAL-FN) IL:OF CONTEXT IL:WITH (OR (IL:LISTGET PROPS :EVAL-FN)
(XCL::PROFILE-ENTRY-VALUE ’*EVAL-FUNCTION*)))

(WHEN (IL:LISTGET PROPS :SELECT-STRUCTURE)
(IL:REPLACE (EDIT-CONTEXT FIND-CANDIDATE) IL:OF CONTEXT IL:WITH (CONS (IL:LISTGET PROPS :SELECT-STRUCTURE)

(OR (IL:LISTGET PROPS
:SELECT-INSTANCE)

1)))))

(DEFUN START-PROCESS (CONTEXT)

;;; the context is ready. start the sedit process. the rest of the initialization will happen in the sedit process, and the completion-event will be notified (by
;;; SEDIT1) when the sedit is initialized.

(LET ((NAME (IL:FETCH (EDIT-CONTEXT ICON-TITLE) IL:OF CONTEXT))
(EVENT (IL:|fetch| (EDIT-CONTEXT COMPLETION-EVENT) IL:|of| CONTEXT)))

(IL:ADD.PROCESS (LIST ’SEDIT1 (IL:KWOTE CONTEXT))
’IL:NAME
(IF NAME

(IL:CONCAT EDITOR-NAME " " NAME)
EDITOR-NAME))

(IL:|until| (EQ EVENT (IL:AWAIT.EVENT EVENT)))))

;; THESE CAN ALL BE NUKED WITH THE NEW EDIT INTERFACE AND A DETACHED TTY/EDITOR (WOZ 1/25/91)

(IL:PUTPROPS SEDIT IL:|Definition-for-EDITL| SEDITL)

(IL:PUTPROPS SEDIT IL:|Definition-for-EDITE| SEDITE)

(IL:PUTPROPS SEDIT IL:|Definition-for-EDITDATE| IL:TTY/EDITDATE)

(IL:DEFINEQ

(SEDITE
 (IL:LAMBDA (EXPR COMS ATOM TYPE IFCHANGEDFN OPTIONS) ; Edited 10-Jul-91 19:04 by jds

;;; Convert call to EDITE into sedit format (structure props options). The completion-fn is determined based on TYPE, since the file manager isn’t very
;;; consistent about IL:PROPLST and IL:ALIST. Since EDITE is supposed to wait for completion, create a completion event which is notified by the
;;; completion-fn. Also, if the top cons is changed, try to smash the completed structure into EXPR to provide eqness.

;;; IDEALLY: this whole mess wouldn’t exist- if il:putdef could handle il:proplst, etc, then completion could simply call putdef, not special case as it does
;;; here.

(LET* ((EVENT (IL:CREATE.EVENT "SEDITE Completion"))
(NEW-EXPR)

{MEDLEY}<CLTL2>SEDIT-TOPLEVEL.;1 (SEDITE cont.) Page 5

(COMPLETION-FN (OR (AND IL:FILEPKGFLG
(IL:SELECTQ TYPE

(IL:PROPLST (LET ((OLD-PROPS (IL:APPEND (IL:GETPROPLIST ATOM))))
#’(LAMBDA (CONTEXT STRUCTURE CHANGED?)

(FUNCALL #’PROPS-COMPLETION CONTEXT STRUCTURE
CHANGED? ATOM IFCHANGEDFN OLD-PROPS)

(SETQ NEW-EXPR STRUCTURE)
(IL:NOTIFY.EVENT EVENT))))

(IL:VARS (WHEN (IL:EQMEMB ’IL:ALIST (IL:GETPROP ATOM ’IL:VARTYPE))
(LET ((OLD-VAL (IL:MAPCAR (IL:FUNCTION CAR)

(IL:EVALV ATOM))))
#’(LAMBDA (CONTEXT STRUCTURE CHANGED?)

(FUNCALL #’ALIST-COMPLETION CONTEXT
STRUCTURE CHANGED? ATOM IFCHANGEDFN
OLD-VAL)

(SETQ NEW-EXPR STRUCTURE)
(IL:NOTIFY.EVENT EVENT)))))

NIL))
(AND ATOM TYPE #’(LAMBDA (CONTEXT STRUCTURE CHANGED?)

(FUNCALL #’COMPLETION CONTEXT STRUCTURE CHANGED? ATOM TYPE
IFCHANGEDFN)

(SETQ NEW-EXPR STRUCTURE)
(IL:NOTIFY.EVENT EVENT)))

#’(LAMBDA (CONTEXT STRUCTURE CHANGED?)
(SETQ NEW-EXPR STRUCTURE)
(IL:NOTIFY.EVENT EVENT))))

(ROOT-CHANGED-FN (IL:SELECTQ TYPE
(IL:PROPLST (LIST (IL:FUNCTION PROPLST-CHANGED)

ATOM))
(IL:VARS (LIST (IL:FUNCTION VAR-CHANGED)

ATOM))
(IL:FNS (LIST (IL:FUNCTION FN-CHANGED)

ATOM))
NIL)))

(COND
(COMS (IL:TTY/EDITE EXPR COMS ATOM TYPE IFCHANGEDFN OPTIONS))
(T (WHEN (AND IL:FILEPKGFLG (OR IL:CLISPARRAY (PROGN (IL:CLISPTRAN (CONS)

(CONS))
IL:CLISPARRAY)))

(IL:SELECTQ TYPE
(IL:PROPLST (IL:|for| X IL:|in| (IL:GETPROPLIST ATOM) IL:|unless| (OR (IL:NLISTP X)

(IL:GETHASH X
IL:CLISPARRAY))

IL:|do| (IL:PUTHASH X (CONS (CAR X)
(CDR X))

IL:CLISPARRAY)))
(IL:VARS (WHEN (IL:EQMEMB ’IL:ALIST (IL:GETPROP ATOM ’IL:VARTYPE))

(IL:|for| X IL:|in| (IL:EVALV ATOM) IL:|unless| (OR (IL:NLISTP X)
(IL:GETHASH X IL:CLISPARRAY))

IL:|do| (IL:PUTHASH X (CONS (CAR X)
(CDR X))

IL:CLISPARRAY))))
NIL))

(SEDIT EXPR (LIST :NAME ATOM :TYPE TYPE :COMPLETION-FN COMPLETION-FN :ROOT-CHANGED-FN
ROOT-CHANGED-FN)

OPTIONS)
(UNLESS (IL:EQMEMB :DONTWAIT OPTIONS)

(IL:|until| (EQ EVENT (IL:AWAIT.EVENT EVENT))))

;; EDITE is for side effects (but we return the correct structure anyway. If the user replaced the top cons, smash the new structure
;; into it. Have to copy the new structure in this case because, if the user wrapped the top cons, smashing into it will result in a
;; circular list. Additionally, if there is an sedit root-changed-fn, assume the caller handled the root change then, and eqness is not
;; necessary.

(IF (OR (EQ NEW-EXPR EXPR)
ROOT-CHANGED-FN
(NOT (CONSP EXPR))
(NOT (CONSP NEW-EXPR)))

NEW-EXPR
(IL:RPLNODE2 EXPR (COPY-TREE NEW-EXPR))))))))

(SEDITL
 (IL:LAMBDA (EDITEXPR EDITCOMS ATOM MESSAGE EDITCHANGES) ; Edited 25-Jan-91 13:45 by woz

(DECLARE (SPECIAL TYPE))

;;; this is SEdit’s definition for EDITL. if there are no COMS (normal case) we start an interactive SEdit. otherwise, we run the TTY editor to execute the
;;; coms, and arrange to start an SEdit if it stops for input.

(COND
(EDITCOMS

;; used to push stuff on il:editmacros, now we bind il:ttyeditfn

;; (il:resetvar il:editmacros (cons ’(il:tty\: nil (il:e (ttyfn il:atm type) t)) il:editmacros) (il:tty/editl editexpr editcoms atom message
;; editchanges))

(LET ((IL:TTYEDITFN #’(LAMBDA NIL (TTYFN ATOM TYPE))))
(DECLARE (SPECIAL IL:TTYEDITFN))
(IL:TTY/EDITL EDITEXPR EDITCOMS ATOM MESSAGE EDITCHANGES)))

{MEDLEY}<CLTL2>SEDIT-TOPLEVEL.;1 (SEDITL cont.) Page 6

(T (SEDIT (CAR EDITEXPR)
(LIST :NAME ATOM :TYPE (AND (BOUNDP ’TYPE)

TYPE)))
EDITEXPR))))

(FN-CHANGED
 (IL:LAMBDA (STRUCTURE ATOM) ; Edited 7-Jul-87 12:59 by DCB

(COND
((NOT (IL:CCODEP (IL:GETD ATOM)))
(IL:PUTD ATOM STRUCTURE))

((IL:LISTP (IL:GETPROP ATOM ’IL:EXPR))
(IL:PUTPROP ATOM ’IL:EXPR STRUCTURE))

(T (IL:SHOULDNT "where did this come from?")))))

(PROP-CHANGED
 (IL:LAMBDA (STRUCTURE ATOM) ; Edited 7-Jul-87 12:59 by DCB

(IL:PUTPROP ATOM ’IL:EXPR STRUCTURE)))

(PROPLST-CHANGED
 (IL:LAMBDA (STRUCTURE ATOM) ; Edited 7-Jul-87 12:59 by DCB

(IL:SETPROPLIST ATOM STRUCTURE)))

(VAR-CHANGED
 (IL:LAMBDA (STRUCTURE ATOM) ; Edited 7-Jul-87 12:59 by DCB

(SET ATOM STRUCTURE)))

(ALIST-COMPLETION
 (IL:LAMBDA (CONTEXT STRUCTURE CHANGED? ATOM IFCHANGEDFN OLD-KEYS)

; Edited 18-Jan-88 15:43 by woz
(WHEN (EQ CHANGED? T)

;; don’t do anything if changed is NIL or :ABORT

(LET (FOUND-CHANGE OLD-VALUE)
(IL:FOR X IL:IN OLD-KEYS IL:UNLESS (IL:ASSOC X STRUCTURE) IL:DO (IL:MARKASCHANGED (LIST ATOM X)

’IL:ALISTS NIL)
(IL:SETQ FOUND-CHANGE T))

(IL:FOR X IL:IN STRUCTURE IL:WHEN (AND (IL:LISTP X)
(NOT (AND IL:CLISPARRAY (IL:SETQ OLD-VALUE (IL:GETHASH X

IL:CLISPARRAY
))

(EQ (CAR X)
(CAR OLD-VALUE))

(EQ (CDR X)
(CDR OLD-VALUE)))))

IL:DO (IL:PUTHASH X NIL IL:CLISPARRAY)
(IL:MARKASCHANGED (LIST ATOM (CAR X))

’IL:ALISTS NIL)
(IL:SETQ FOUND-CHANGE T))

(WHEN (NOT FOUND-CHANGE)
(COMPLETION CONTEXT STRUCTURE CHANGED? ATOM ’IL:ALISTS IFCHANGEDFN))))))

(COMPLETION
 (IL:LAMBDA (CONTEXT STRUCTURE CHANGED? ATOM TYPE IFCHANGEDFN) ; Edited 3-Jan-92 14:11 by jrb:

(IF (OR (NOT CHANGED?)
(EQ CHANGED? :ABORT))

NIL
(PROGN (FIX-EDITDATE CONTEXT STRUCTURE TYPE)

(COND
((EQ TYPE ’IL:FNS)
(IL:PUTDEF ATOM TYPE STRUCTURE)

;; (if (CCODEP (GETD atom)) then (if (NEQ structure (GETPROP atom (QUOTE EXPR))) then (SHOULDNT ’where did this
;; come from?’) else (if (OR (EQ DFNFLG (QUOTE PROP)) (EQ DFNFLG (QUOTE ALLPROP))) then (SETQ message ’ NOT
;; unsaved.’) else (UNSAVEDEF atom) (SETQ message ’ unsaved.’)) (if (OPENWP (fetch DisplayWindow of context)) then
;; (printout (get.prompt.window context) atom message) else (* ; ’window was closed. msg in promptwindow.’) (printout
;; PROMPTWINDOW T atom message))) else (if (NEQ structure (GETD atom)) then (if (NULL (GETD atom)) then (PUTD atom
;; structure) else (SHOULDNT ’where did this come from?’))))

)
(IFCHANGEDFN

;; this is a bit wrong: the doc for edite says the ifchangedfn gets called with the last arg NIL if the editor is aborted. But
;; we don’t call the ifchangedfn at all if the user did an abort command. The idea is that ABORT is implemented as
;; "don’t install even if changes we’re made"

(FUNCALL IFCHANGEDFN ATOM STRUCTURE TYPE T))
((IL:NEQ TYPE ’IL:PROPLST)
(IL:MARKASCHANGED ATOM TYPE)))))

(WHEN (AND (IL:LITATOM ATOM)
IL:ADDSPELLFLG)

(IL:ADDSPELL ATOM))))

{MEDLEY}<CLTL2>SEDIT-TOPLEVEL.;1 Page 7

(PROPS-COMPLETION
 (IL:LAMBDA (CONTEXT STRUCTURE CHANGED? ATOM IFCHANGEDFN OLDPROPS)

; Edited 20-Apr-88 11:39 by woz
(WHEN (EQ CHANGED? T)

;; don’t do anything if changed? is NIL or :ABORT

(IL:BIND OLD-VALUE FOUND-ONE IL:FOR NEW-PROP IL:ON (IL:GETPROPLIST ATOM) IL:BY (CDDR NEW-PROP)
IL:UNLESS (IL:FOR OLD-PROP IL:ON OLDPROPS IL:BY (CDDR OLD-PROP) IL:WHEN (EQ (CAR OLD-PROP)

(CAR NEW-PROP))
IL:DO (RETURN (AND (EQ (CADR OLD-PROP)

(CADR NEW-PROP))
(OR (IL:NLISTP (CADR OLD-PROP))

(AND IL:CLISPARRAY (IL:SETQ OLD-VALUE (IL:GETHASH (CADR NEW-PROP)
IL:CLISPARRAY))

(EQ (CAADR NEW-PROP)
(CAR OLD-VALUE))

(EQ (CDADR NEW-PROP)
(CDR OLD-VALUE))

(OR (IL:PUTHASH (CADR NEW-PROP)
NIL IL:CLISPARRAY)

T))))))
IL:DO (IL:MARKASCHANGED (LIST ATOM (CAR NEW-PROP))

’IL:PROPS NIL)
(IL:SETQ FOUND-ONE T)))))

(TTYFN
 (IL:LAMBDA (ATM TYPE) ; Edited 21-Jan-91 12:02 by woz

(DECLARE (SPECIAL IL:L IL:EDITCHANGES))

;; this is a replacement for the TTY editor’s TTY: command, which starts an SEdit process to do interactive editing for a while. it uses the TTY
;; editor’s edit chain to determine the initial selection in the structure, and scrolls the window to make sure the selection’s visible. it then waits until
;; the user signals that they’ve done enough editing (usually by closing or shrinking the window)

(LET* ((EDIT-CHANGES IL:EDITCHANGES)
(EVENT (IL:CREATE.EVENT "SEdit TTYFN Completion"))
(COMPLETION-FN #’(LAMBDA (CONTEXT STRUCTURE CHANGED?)

(WHEN (EQ CHANGED? T)
(RPLACA (CDR EDIT-CHANGES)

T))
(IL:NOTIFY.EVENT EVENT)))

(CONTEXT (SEDIT (CAR (LAST IL:L))
(LIST :NAME ATM :TYPE TYPE :COMPLETION-FN COMPLETION-FN)))

NODE)
(IL:WITH.MONITOR (IL:|fetch| CONTEXT-LOCK IL:|of| CONTEXT)

(WHEN (IL:SETQ NODE (LOCATE-NODE-FROM-EDITCHAIN IL:L (IL:|fetch| ROOT IL:|of| CONTEXT)))
(SELECTION-DOWN CONTEXT)
(SELECT-NODE CONTEXT NODE)
(SET-POINT-NOWHERE (IL:|fetch| CARET-POINT IL:|of| CONTEXT))
(NORMALIZE-SELECTION CONTEXT)
(SELECTION-UP CONTEXT)))

;; let the user do their editing, then signal completion, before we return

(IL:|until| (EQ EVENT (IL:AWAIT.EVENT EVENT))))))

(LOCATE-NODE-FROM-EDITCHAIN
 (IL:LAMBDA (CHAIN ROOT) ; Edited 17-Nov-87 11:27 by DCB

;;; when SEdit is called under the TTY editor, it gets an edit chain to determine the initial selection. this process finds the node that editchain refers to (or
;;; returns NIL if no such node exists)

(IF (NULL CHAIN)
ROOT
(IL:FOR SUBNODE IL:IN (CDR (IL:FETCH SUB-NODES IL:OF (LOCATE-NODE-FROM-EDITCHAIN (CDR CHAIN)

ROOT)))
IL:THEREIS (EQ (IL:FETCH STRUCTURE IL:OF SUBNODE)

(CAR CHAIN))))))

)

;; SEdit’s hack way of fixing edit dates

(DEFUN FIX-EDITDATE (CONTEXT STRUCTURE TYPE) ; Edited 3-Jan-92 14:24 by jrb:

;; If we can find an :EDITDATE-OFFSET, look for an editdate comment at that offset, and smash or insert one appropriately

(LET ((OFFSET (COND
((EQ TYPE ’FNS)
2)

((GET TYPE :DEFINED-BY)
(GET (CAR STRUCTURE)

:EDITDATE-OFFSET))))
NEWDATESTRING)

(WHEN (AND IL:INITIALS OFFSET)
(SETQ NEWDATESTRING (IL:CONCAT "Edited " (IL:DATE (IL:DATEFORMAT IL:NO.SECONDS))

" by " IL:INITIALS))
(IF (IL:EDITDATE? (NTH OFFSET STRUCTURE))

{MEDLEY}<CLTL2>SEDIT-TOPLEVEL.;1 (FIX-EDITDATE cont.) Page 8

(LET ((EDITDATE-NODE (SUBNODE (1+ OFFSET)
(SUBNODE 1 (IL:FETCH ROOT IL:OF CONTEXT)))))

(REPLACE-NODE CONTEXT EDITDATE-NODE (PARSE-NEW ‘
(IL:* IL:\; (IL:\\\, NEWDATESTRING))
CONTEXT)))

(LET ((POINT (IL:CREATE EDIT-POINT
POINT-NODE IL:_ (SUBNODE 1 (IL:FETCH ROOT IL:OF CONTEXT))
POINT-INDEX IL:_ OFFSET
POINT-TYPE IL:_ ’STRUCTURE)))

(INSERT POINT CONTEXT (PARSE-NEW ‘ (IL:* IL:\; (IL:\\\, NEWDATESTRING))
CONTEXT))))

;; This looks bogus, BUT: we just changed the structure in mid-editor-shutdown, so we need to tell SEdit that we really didn’t mean it,
;; sort of...

(THROW-AWAY-CHANGES CONTEXT))))

;; Mess around with the tty editor’s TTY: command by defining a hook and then making TTY: a macro which calls the hook.

(DEFUN SMART-TTYFN ()

;;; This is a replacement for the TTY editor’s TTY: command, which is supposed to start up a TTY editor. We first check to see if we’re

(DECLARE (SPECIAL IL:L IL:TTYEDITFN))
(IF (AND (BOUNDP ’IL:TTYEDITFN)

IL:TTYEDITFN)
(FUNCALL IL:TTYEDITFN)
(IL:EDITL0 IL:L NIL ’IL:TTY\: ’IL:TTY\:)))

(PUSHNEW ’(IL:TTY\: NIL (IL:E (SMART-TTYFN)
T))

IL:EDITMACROS :TEST #’IL:EQUAL)

(IL:DEFINEQ

(PRETTY-PRINT
 (IL:LAMBDA (STRUCTURE STREAM RIGHT-MARGIN) ; Edited 7-Jul-87 12:59 by DCB

;;; with just a little hacking, SEdit can be used to prettyprint functions onto TEdit streams. we make up a slightly weird context, and run the parser and
;;; linearizer each once. stream is actually the textobj of the tedit stream. note that right.margin is in micas (since that’s the unit that interpress font
;;; widths are expressed in)

(OR (BOUNDP ’PRETTY-PRINT-ENV)
(CREATE-PRETTY-PRINT-ENV))

(LET ((CONTEXT (IL:CREATE EDIT-CONTEXT
DISPLAY-WINDOW IL:_ STREAM
ENVIRONMENT IL:_ PRETTY-PRINT-ENV
CURRENT-X IL:_ 0
COMMENT-WIDTH IL:_ (IL:FIXR (IL:TIMES 200 IL:MICASPERPT))
COMMENT-SEPARATION IL:_ (IL:FIXR (IL:TIMES 30 IL:MICASPERPT))))

(ROOT (IL:CREATE EDIT-NODE
NODE-TYPE IL:_ TYPE-ROOT
SUB-NODES IL:_ (LIST 0)
START-X IL:_ 0
DEPTH IL:_ 0)))

(IL:REPLACE CURRENT-NODE IL:OF CONTEXT IL:WITH ROOT)
(PARSE STRUCTURE CONTEXT)
(COMPUTE-ALL-FORMATS CONTEXT NIL)
(LINEARIZE (SUBNODE 1 ROOT)

CONTEXT
(IL:FIXR RIGHT-MARGIN)))))

(MAP-FONT
 (IL:LAMBDA (FONT ENV) ; Edited 17-Nov-87 10:43 by DCB

;; this is called when using the prettyprint environment, under output.string. we have to map the font into something acceptable to TEDIT.INSERT
;; (since interpress fonts confuse it)

(COND
((EQ FONT (IL:FETCH DEFAULT-FONT IL:OF ENV))
IL:DEFAULTFONT)

((EQ FONT (IL:FETCH KEYWORD-FONT IL:OF ENV))
IL:CLISPFONT)

((EQ FONT (IL:FETCH ITALIC-FONT IL:OF ENV))
IL:ITALICFONT)

((EQ FONT (IL:FETCH COMMENT-FONT IL:OF ENV))
IL:COMMENTFONT)

((EQ FONT (IL:FETCH BROKEN-ATOM-FONT IL:OF ENV))
IL:BOLDFONT)

(T (IL:SHOULDNT "unexpected font!")))))

)

;; these guys allow you to print and read structures with broken atoms and gaps. just a convenience for the loser who forgets to get them out of his
;; code.

{MEDLEY}<CLTL2>SEDIT-TOPLEVEL.;1 Page 9

(DEFUN MAKE-BROKEN-ATOM (STRING)
(IL:|create| BROKEN-ATOM

ATOM-CHARS IL:_ STRING))

(DEFUN PRINT-BROKEN-ATOM (BROKEN-ATOM STREAM X)
(FORMAT STREAM "#.(~S ~S)" ’MAKE-BROKEN-ATOM (IL:|fetch| ATOM-CHARS IL:|of| BROKEN-ATOM))
T)

(DEFUN MAKE-GAP (ITEM)
(IL:|create| GAP

LINEAR-ITEM IL:_ ITEM))

(DEFUN PRINT-GAP (GAP STREAM X)
(FORMAT STREAM "#.(~S ’~S)" ’MAKE-GAP (IL:|fetch| LINEAR-ITEM IL:|of| GAP))
T)

(IL:DEFPRINT ’BROKEN-ATOM ’PRINT-BROKEN-ATOM)

(IL:DEFPRINT ’GAP ’PRINT-GAP)

(IL:PUTPROPS IL:SEDIT-TOPLEVEL IL:COPYRIGHT ("Venue & Xerox Corporation" 1986 1987 1988 1990 1991 1992))

{MEDLEY}<CLTL2>SEDIT-TOPLEVEL.;1 9-Oct-2024 02:37:43
-- Listed on 9-Oct-2024 02:39:37 --

FUNCTION INDEX

ALIST-COMPLETION6 MAKE-GAP9 RESET2
AWAKE-COMMAND-PROCESS3 MAP-FONT8 SAVE-WINDOW-REGION2
AWAKE-ME3 MARKASCHANGEDFN3 SEDIT1
COMPLETION6 NEW-FUNCTION-BODY3 SEDITE4
DISINTEGRATE-CONTEXT3 PRETTY-PRINT8 SEDITL5
FIX-EDITDATE7 PRINT-BROKEN-ATOM9 SET-OPTIONS4
FN-CHANGED6 PRINT-GAP9 SET-PROPS4
GET-CONTEXT2 PROP-CHANGED6 SMART-TTYFN8
GET-WINDOW-REGION2 PROPLST-CHANGED6 START-PROCESS4
LOCATE-NODE-FROM-EDITCHAIN7 PROPS-COMPLETION7 TTYFN7
MAKE-BROKEN-ATOM9 QUERY-THROW-AWAY-CHANGES4 VAR-CHANGED6

VARIABLE INDEX

IL:*DISPLAY-EDITOR*1 CONTEXTS1 REGIONS1

PROPERTY INDEX

SEDIT4 IL:SEDIT-TOPLEVEL1

